Modular Forms: Problem Sheet 8

Sarah Zerbes

6th May 2022

1. Find an integer N and a Dirichlet character χ modulo N such that
(a) χ is primitive, but not injective;

Solution: Let $N=8$, then $(\mathbb{Z} / 8 \mathbb{Z})^{*} \cong C_{2} \times C_{2}$, and define the Dirichlet character

$$
\chi: \begin{array}{rlr}
1 & \mapsto & 1 \\
3 & \mapsto & 1 \\
5 & \mapsto & -1 \\
7 & \mapsto & -1
\end{array}
$$

This character is clearly not injective. Is it primitive? The positive divisors of 8 are 2 and 4. Modulo 2, the only Dirichlet character is the trivial one. Modulo 4, we have observed that there exists a unique non-trivial Dirichlet character χ_{4} mapping 3 to -1 . Its induced character $\bmod 8$ is by definition $\tilde{\chi}(a)=\chi_{4}(a \bmod 4)$, and it is definitely different from χ.
(b) χ is injective, but not primitive.

Solution: Let $N=6$, then $(\mathbb{Z} / 6 \mathbb{Z})^{*} \cong C_{2}$, and define

$$
\chi: \begin{array}{rlr}
1 & \mapsto & 1 \\
5 & \mapsto & -1
\end{array}
$$

Note that χ is clearly injective. However, it is an easy check to see that χ is induced by the character mod 3 mapping 2 to -1 .

Show that the situation of (b) can only occur if $N=2 \bmod 4$.

Solution: We let $N=2^{\alpha} p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}}$, where $\alpha, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}$ and where the p_{i} 's are pairwise distinct odd primes. If χ is a non-primitive Dirichlet character $\bmod N$, then χ can be written as $\chi=\tilde{\chi} \circ \pi$, where $\tilde{\chi}$ is a character $\bmod M$ for a positive divisor M of N and $\pi:(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow$ $(\mathbb{Z} / M \mathbb{Z})^{*}$ is the reduction $\bmod M$. Note that χ is injective if and only if both $\tilde{\chi}$ and π are injective. We show that for $\alpha=0$ and $\alpha \geq 2, \pi$ cannot be injective.
We write $M=2^{\beta} p_{1}^{\beta_{1}} \cdots p_{n}^{\beta_{n}}$, where $\beta, \beta_{i} \in \mathbb{N}, \beta \leq \alpha$, and $\beta_{i} \leq \alpha_{i}$ for all i such that if $\beta=\alpha$ then $\beta_{i}<\alpha_{i}$ for some i. We then have the following diagram:

where $\tilde{\pi}\left(u, v_{1}, \ldots, v_{n}\right)=\left(u \bmod 2^{\beta}, v_{1} \bmod p_{1}^{\beta_{1}}, \ldots, v_{n} \bmod p_{n}^{\beta_{n}}\right)$ is simply defined as composition of the three other morphisms. Recalling that

$$
\left(\mathbb{Z} / 2^{\alpha} \mathbb{Z}\right)^{*} \cong\left\{\begin{aligned}
C_{1}, & \alpha=1 \\
C_{2}, & \alpha=2 \\
C_{2} \times C_{2^{\alpha-2}}, & \alpha>2
\end{aligned}\right.
$$

and that $\left(\mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}\right) \cong C_{\varphi\left(p_{i}^{\alpha_{i}}\right)}$, where φ denotes the Euler totient function. We can now deduce when $\tilde{\pi}$ is injective in function of α by conducting a simple case by case analysis.
2. Let p and q be distinct primes dividing the positive integer N. Show directly that if $\alpha_{0}, \ldots, \alpha_{p-1}$ and $\beta_{0}, \ldots, \beta_{q-1}$ are the left coset representatives for the double cosets T_{p} and T_{q} constructed in Proposition 3.2.2, then $\left\{\alpha_{i} \beta_{j}: 0 \leq i \leq p-1,0 \leq j \leq q-1\right\}$ is a set of left coset representatives for the double coset $\Gamma_{1}(N)\left(\begin{array}{cc}1 & 0 \\ 0 & p q\end{array}\right) \Gamma_{1}(N)$.
Hence give a direct proof that $T_{p} T_{q}=T_{q} T_{p}$ in this case.

Solution: We have shown that we can take

$$
\alpha_{i}=\left(\begin{array}{ll}
1 & i \\
0 & 1
\end{array}\right), \beta_{j}=\left(\begin{array}{ll}
1 & j \\
0 & 1
\end{array}\right)
$$

We compute that

$$
\alpha_{i} \beta_{j}=\left(\begin{array}{cc}
1 & j+i q \\
0 & p q
\end{array}\right)
$$

Now, note that

$$
\{j+i q \mid 0 \leq j \leq q-1,0 \leq i \leq p-1\}=\{k \mid 0 \leq k \leq p q-1\}
$$

and define

$$
\gamma_{k}:=\left(\begin{array}{cc}
1 & k \\
0 & p q
\end{array}\right) .
$$

Showing that $\left\{\gamma_{k}\right\}$ is a set of left coset representatives for the double $\operatorname{coset} \Gamma_{1}(N)\left(\begin{array}{cc}1 & 0 \\ 0 & p q\end{array}\right) \Gamma_{1}(N)$ can be done using a similar method as the one presented in the lecture and in the exercise class. As a byproduct, we obtain the commutativity of T_{p} and T_{q} since $\left\{\alpha_{i} \beta_{j}\right\}=\left\{\beta_{j} \alpha_{i}\right\}$.
3. Suppose p is a prime, $\Gamma=\Gamma_{1}(p)$ and $g=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$. Find p matrices $\left(g_{j}\right)_{j=0, \ldots, p-1}$ in $\mathrm{GL}_{2}^{+}(\mathbf{Q})$ such that

$$
\Gamma g \Gamma=\bigsqcup_{0 \leq j<p} \Gamma g_{j}=\bigsqcup_{0 \leq j<p} g_{j} \Gamma
$$

Solution: Many thanks to Haoran Liang for his input to the following solution. We first prove a lemma that gives an explicit way to construct simultaneous left and right coset representatives. This will give us a recipe to obtain the desired representatives, but you could also have solved the exercise without this result by making a few good guesses.

Lemma 0.1. Let G be a group and H a subgroup of G of finite index m. Then there exist $g_{1}, g_{2}, \ldots, g_{m} \in G$ such that the g_{i} 's are simultaneously left and right coset representatives.

Proof. Let $R \subset G$ be a set of double coset representatives so that $G=\bigsqcup_{g \in R} H g H$. Assume that we also have a left and right coset decomposition of HgH as

$$
\bigsqcup_{1 \leq i \leq t} H g a_{i}=H g H=\bigsqcup_{1 \leq i \leq t} b_{i} g H
$$

where t is the index of $H \cap g^{-1} H g$ in H (which equals the index of $g H g^{-1} \cap H$ in H) and with $a_{i}, b_{i} \in H$ for all i. This implies that

$$
\begin{equation*}
\bigsqcup_{1 \leq i \leq t} H b_{i} g a_{i}=H g H=\bigsqcup_{1 \leq i \leq t} b_{i} g a_{i} H \tag{1}
\end{equation*}
$$

Hence $\left\{b_{i} g a_{i} \mid 1 \leq i \leq t\right\}$ is a set of simultaneous left and right double coset representatives for HgH and

$$
\bigcup_{g \in R}\left\{b_{i}(g) g a_{i}(g) \mid 1 \leq i \leq t(g)\right\}
$$

where $a_{i}(g), b_{i}(g), t(g)$ are the a_{i}, b_{i}, t corresponding to a given g as above, is the set of g_{j} 's mentioned in the statement of the lemma.

Let us return to our original problem. We will not need the part of the lemma giving a decomposition of G, but we will use (1). We compute that

$$
\begin{aligned}
& g^{-1} \Gamma g \cap \Gamma=\Gamma(p), \text { the principal congruence subgroup of level } p \text { and } \\
& g \Gamma g^{-1} \cap \Gamma=g \Gamma(p) g^{-1}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{1}(p)\left|p^{2}\right| c\right\}=: \Gamma^{\prime} .
\end{aligned}
$$

You can easily check, using the method seen in the lecture, that a set of right coset representatives of Γ / Γ^{\prime} is given by

$$
\left\{\beta_{i}: \left.=\left(\begin{array}{cc}
1 & 0 \\
p i & 1
\end{array}\right) \right\rvert\, 0 \leq i \leq p-1\right\}
$$

Easy exercise: Adapting the proof of Proposition 3.1.4., prove that given $\left\{\beta_{i}\right\}$, the set $\left\{\beta_{i} g\right\}$ is a set of right coset representatives for the double coset $\Gamma g \Gamma$.
By (1) in the proof of the above lemma, we conclude that

$$
\left\{\beta_{i} g \alpha_{i} \mid 0 \leq i \leq p-1\right\}
$$

is a set of simultaneous left and right coset representatives, i.e. that

$$
\bigsqcup_{0 \leq i \leq p-1} H \beta_{i} g \alpha_{i}=\Gamma g \Gamma=\bigsqcup_{0 \leq i \leq p-1} \beta_{i} g \alpha_{i} H
$$

