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1. Find an integer N and a Dirichlet character χ modulo N such that

(a) χ is primitive, but not injective;

Solution: Let N = 8, then (Z/8Z)∗ ∼= C2 × C2, and define the Dirichlet character

χ :

1 7→ 1
3 7→ 1
5 7→ −1
7 7→ −1

This character is clearly not injective. Is it primitive? The positive divisors of 8 are 2 and
4. Modulo 2, the only Dirichlet character is the trivial one. Modulo 4, we have observed
that there exists a unique non-trivial Dirichlet character χ4 mapping 3 to -1. Its induced
character mod 8 is by definition χ̃(a) = χ4(amod4), and it is definitely different from χ.

(b) χ is injective, but not primitive.

Solution: Let N = 6, then (Z/6Z)∗ ∼= C2, and define

χ :
1 7→ 1
5 7→ −1

Note that χ is clearly injective. However, it is an easy check to see that χ is induced by the
character mod 3 mapping 2 to -1.

Show that the situation of (b) can only occur if N = 2 mod 4.

Solution: We let N = 2αpα1
1 · · · pαn

n , where α, α1, . . . , αn ∈ N and where the pi’s are pairwise
distinct odd primes. If χ is a non-primitive Dirichlet character mod N , then χ can be written
as χ = χ̃ ◦ π, where χ̃ is a character mod M for a positive divisor M of N and π : (Z/NZ)∗ →
(Z/MZ)∗ is the reduction mod M . Note that χ is injective if and only if both χ̃ and π are
injective. We show that for α = 0 and α ≥ 2, π cannot be injective.

We write M = 2βpβ1

1 · · · pβn
n , where β, βi ∈ N, β ≤ α, and βi ≤ αi for all i such that if β = α

then βi < αi for some i. We then have the following diagram:

(Z/NZ)∗ (Z/2αZ)∗ × (Z/pα1
1 Z)∗ × · · · × (Z/pαn

n Z)∗

(Z/MZ)∗

(Z/2βZ)∗ × (Z/pβ1

1 Z)∗ × · · · × (Z/pβn
n Z)∗

∼=

π

π̃

∼=

1



where π̃(u, v1, . . . , vn) = (umod2β , v1 mod pβ1

1 , . . . , vn mod pβn
n ) is simply defined as composition

of the three other morphisms. Recalling that

(Z/2αZ)∗ ∼=

 C1, α = 1
C2, α = 2

C2 × C2α−2 , α > 2

and that (Z/pαi
i Z) ∼= Cφ(p

αi
i ), where φ denotes the Euler totient function. We can now deduce

when π̃ is injective in function of α by conducting a simple case by case analysis.

2. Let p and q be distinct primes dividing the positive integer N . Show directly that if α0, . . . , αp−1

and β0, . . . , βq−1 are the left coset representatives for the double cosets Tp and Tq constructed in
Proposition 3.2.2, then {αiβj : 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1} is a set of left coset representatives for

the double coset Γ1(N)

(
1 0
0 pq

)
Γ1(N).

Hence give a direct proof that TpTq = TqTp in this case.

Solution: We have shown that we can take

αi =

(
1 i
0 1

)
, βj =

(
1 j
0 1

)
.

We compute that

αiβj =

(
1 j + iq
0 pq

)
.

Now, note that

{j + iq | 0 ≤ j ≤ q − 1, 0 ≤ i ≤ p− 1} = {k | 0 ≤ k ≤ pq − 1}

and define

γk :=

(
1 k
0 pq

)
.

Showing that {γk} is a set of left coset representatives for the double coset Γ1(N)

(
1 0
0 pq

)
Γ1(N)

can be done using a similar method as the one presented in the lecture and in the exercise class.

As a byproduct, we obtain the commutativity of Tp and Tq since {αiβj} = {βjαi}.

3. Suppose p is a prime, Γ = Γ1(p) and g =

(
1 0
0 p

)
. Find p matrices (gj)j=0,...,p−1 in GL+

2 (Q) such

that
ΓgΓ =

⊔
0≤j<p

Γgj =
⊔

0≤j<p

gjΓ.

Solution: Many thanks to Haoran Liang for his input to the following solution. We first prove
a lemma that gives an explicit way to construct simultaneous left and right coset representatives.
This will give us a recipe to obtain the desired representatives, but you could also have solved
the exercise without this result by making a few good guesses.

Lemma 0.1. Let G be a group and H a subgroup of G of finite index m. Then there exist
g1, g2, . . . , gm ∈ G such that the gi’s are simultaneously left and right coset representatives.
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Proof. Let R ⊂ G be a set of double coset representatives so that G =
⊔

g∈R HgH. Assume
that we also have a left and right coset decomposition of HgH as⊔

1≤i≤t

Hgai = HgH =
⊔

1≤i≤t

bigH,

where t is the index of H ∩ g−1Hg in H (which equals the index of gHg−1 ∩H in H) and with
ai, bi ∈ H for all i. This implies that⊔

1≤i≤t

Hbigai = HgH =
⊔

1≤i≤t

bigaiH. (1)

Hence {bigai | 1 ≤ i ≤ t} is a set of simultaneous left and right double coset representatives for
HgH and ⋃

g∈R

{bi(g)gai(g) | 1 ≤ i ≤ t(g)},

where ai(g), bi(g), t(g) are the ai, bi, t corresponding to a given g as above, is the set of gj ’s
mentioned in the statement of the lemma.

Let us return to our original problem. We will not need the part of the lemma giving a decom-
position of G, but we will use (1). We compute that

g−1Γg ∩ Γ = Γ(p), the principal congruence subgroup of level p and

gΓg−1 ∩ Γ = gΓ(p)g−1 =

{(
a b
c d

)
∈ Γ1(p) | p2|c

}
=: Γ′.

You can easily check, using the method seen in the lecture, that a set of right coset representatives
of Γ/Γ′ is given by {

βi :=

(
1 0
pi 1

)
| 0 ≤ i ≤ p− 1

}
.

Easy exercise: Adapting the proof of Proposition 3.1.4., prove that given {βi}, the set {βig}
is a set of right coset representatives for the double coset ΓgΓ.

By (1) in the proof of the above lemma, we conclude that

{βigαi | 0 ≤ i ≤ p− 1}

is a set of simultaneous left and right coset representatives, i.e. that⊔
0≤i≤p−1

Hβigαi = ΓgΓ =
⊔

0≤i≤p−1

βigαiH.
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