Modular Forms: Problem Sheet 9

Sarah Zerbes

16th May 2022

1. Prove the formula stated in Remark 3.2 .29 of the lecture notes: let $f \in \mathcal{M}_{k}\left(\Gamma_{1}(N)\right)$ with q-expansion

$$
f(z)=\sum_{m=0}^{\infty} a_{m}(f) q^{m}, q=e^{2 i \pi z}
$$

and show that for all $n \in \mathbb{Z}^{+}, T_{n}(f)$ has Fourier expansion

$$
\sum_{m=0}^{\infty} a_{m}\left(T_{n} f\right) q^{m}
$$

where

$$
a_{m}\left(T_{n} f\right)=\sum_{d \mid(m, n)} d^{k-1} a_{m n / d^{2}}(\langle d\rangle f) .
$$

Hint: Since $\mathcal{M}_{k}\left(\Gamma_{1}(N)\right)$ can be decomposed as a direct sum of eigenspaces of the form $\mathcal{M}_{k}\left(\Gamma_{1}(N), \chi\right)$, this is tantamount to showing that if $f \in \mathcal{M}_{k}\left(\Gamma_{1}(N), \chi\right)$, then

$$
\begin{equation*}
a_{m}\left(T_{n} f\right)=\sum_{d \mid(m, n)} \chi(d) d^{k-1} a_{m n / d^{2}}(f), \forall n \in \mathbb{Z}^{+} \tag{1}
\end{equation*}
$$

Solution: We assume that $f \in \mathcal{M}_{k}\left(\Gamma_{1}(N), \chi\right)$ and prove (1) by induction for n taken to be a prime power. Note that the case $n=1$ is trivial and that we proved the formula for $n=p$ in Theorem 3.2.20. Let us set the convention that $a_{k / l}(f)=0$ whenever $k / l \notin \mathbb{Z}^{+}$. This will allow us to consider both the cases $p \mid N$ and $p \nmid N$ at once.
Now consider $n=p^{r}, r \geq 2$ and assume that the formula holds for $n=1, p, p^{2}, \ldots, p^{r-1}$. By definition of T_{p}, we have

$$
\begin{aligned}
a_{m}\left(T_{p^{r}} f\right) & =a_{m}\left(T_{p} T_{p^{r-1}} f\right)-p^{k-1} a_{m}\left(\langle p\rangle T_{p^{r-2}} f\right) \\
& =a_{m p}\left(T_{p^{r-1}}\right)(f)+\chi(p) p^{k-1} a_{m / p}\left(T_{p^{r-1}} f\right)-\chi(p) p^{k-1} a_{m}\left(T_{p^{r-2}} f\right)
\end{aligned}
$$

Using the induction hypothesis, we obtain

$$
\begin{align*}
a_{m}\left(T_{p^{r} f}\right)= & \sum_{d \mid\left(m p, p^{r-1}\right)} \chi(d) d^{k-1} a_{m p^{r} / d^{2}}(f)+\chi(p) p^{k-1} \sum_{d \mid\left(m / p, p^{r-1}\right)} \chi(d) d^{k-1} a_{m p^{r-2} / d^{2}}(f) \\
& -\chi(p) p^{k-1} \sum_{p \mid\left(m, p^{r-2}\right)} \chi(d) d^{k-1} a_{m p^{r-2} / d^{2}}(f) . \tag{2}
\end{align*}
$$

Note that the first term equals

$$
a_{m p^{r}}(f)+\sum_{\substack{d \mid\left(m p, p^{r-1}\right) \\ d>1}} \chi(d) d^{k-1} a_{m p^{r} / d^{2}}(f)
$$

Rearranging the second term above shows that it equals minus the third term of (2), and therefore that

$$
a_{m}\left(T_{p^{r}} f\right)=a_{m p^{r}}(f)+\chi(p) p^{k-1} \sum_{d \mid\left(m / p, p^{r-1}\right)} \chi(d) d^{k-1} a_{m p^{r-2} / d^{2}}(f)
$$

By distributing $\chi(p) p^{k-1}$ above and reindexing to instead be summing over $\left\{\tilde{d}=p d \mid\left(m, p^{r}\right)\right\}$, we obtain the formula.
Now, let $n_{1}, n_{2} \in \mathbb{Z}^{+}$such that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. Then,

$$
\begin{aligned}
a_{m}\left(T_{n_{1}}\left(T_{n_{2}}(f)\right)\right) & =\sum_{d \mid\left(m, n_{1}\right)} \chi(d) d^{k-1} a_{m n_{1} / d^{2}}\left(T_{n_{2}} f\right) \\
& =\sum_{d \mid\left(m, n_{1}\right)} \chi(d) d^{k-1} \sum_{e \mid\left(m n_{1} / d^{2}, n_{2}\right)} \chi(e) e^{k-1} a_{m n_{1} n_{2} / d^{2} e^{2}}(f) .
\end{aligned}
$$

Once again rearranging the above series and using the fact that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ to merge the two sums as one series indexed by $\left\{l=d e \mid\left(m, n_{1} n_{2}\right)\right\}$ finishes the proof.
2. Let $f \in \mathcal{M}_{k}\left(\Gamma_{1}(N), \chi\right)$ be a normalized Hecke eigenform and define its L-function to be the series

$$
L(f, s)=\sum_{n=1}^{\infty} a_{n}(f) n^{-s}
$$

This is a well-defined function when the real part of $s \in \mathbb{C}$ is large enough.
Express $L(f, s)$ as an Euler product, i.e. find an expression of $L(f, s)$ of the form

$$
L(f, s)=\prod_{p \text { prime }} L_{p}(f, s)
$$

where $L_{p}(f, s)$ is a complex function that depends on p, s, and the Fourier coefficient $a_{p}(f)$.
Hint: Use the intrinsic characterization of Hecke eigenforms proved in Proposition 3.2.34.

Solution: From ii. in Proposition 3.2.34, we know that a normalized Hecke eigenform is multiplicative. Hence, we can rewrite $L(f, s)$ as

$$
\prod_{p, \text { prime }}\left(1+a_{p}(f) p^{-s}+a_{p^{2}}(f) p^{-2 s}+\cdots\right) .
$$

Moreover, condition iii. tells $^{\text {us that the series }} \sum_{r=0}^{\infty} a_{p^{r}}(f) x^{r}$ equals

$$
\frac{1}{1-a_{p} x+\chi(p) p^{k-1} x^{2}} .
$$

To see this, first note that

$$
\text { iii. } \Longrightarrow a_{p^{r}}-a_{p} a_{p^{r-1}}+\chi(p) p^{k-1} a_{p^{r-2}}=0
$$

Hence, after some rearranging,

$$
\begin{aligned}
\sum_{r=0}^{\infty} a_{p^{r}} x^{r}\left(1-a_{p} x+\chi(p) p^{k-1} x^{2}\right) & =a_{1}+a_{p} x-a_{p} a_{1} x \\
& =1, \text { since we assumed } f \text { is normalized. }
\end{aligned}
$$

We conclude that

$$
L(f, s)=\sum_{n=1}^{\infty} a_{n}(f) n^{-s}=\prod_{p, \text { prime }} \frac{1}{1-a_{p} p^{-s}+\chi(p) p^{k-1-2 s}} .
$$

