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1. Prove the formula stated in Remark 3.2.29 of the lecture notes: let f ∈ Mk(Γ1(N)) with q-expansion

f(z) =

∞∑
m=0

am(f)qm, q = e2iπz,

and show that for all n ∈ Z+, Tn(f) has Fourier expansion

∞∑
m=0

am(Tnf)q
m,

where
am(Tnf) =

∑
d|(m,n)

dk−1amn/d2(⟨d⟩ f).

Hint: Since Mk(Γ1(N)) can be decomposed as a direct sum of eigenspaces of the form Mk(Γ1(N), χ),
this is tantamount to showing that if f ∈ Mk(Γ1(N), χ), then

am(Tnf) =
∑

d|(m,n)

χ(d)dk−1amn/d2(f), ∀n ∈ Z+. (1)

Solution: We assume that f ∈ Mk(Γ1(N), χ) and prove (1) by induction for n taken to be a
prime power. Note that the case n = 1 is trivial and that we proved the formula for n = p in
Theorem 3.2.20. Let us set the convention that ak/l(f) = 0 whenever k/l /∈ Z+. This will allow
us to consider both the cases p | N and p ∤ N at once.

Now consider n = pr, r ≥ 2 and assume that the formula holds for n = 1, p, p2, . . . , pr−1. By
definition of Tp, we have

am(Tprf) = am(TpTpr−1f)− pk−1am(⟨p⟩Tpr−2f)

= amp(Tpr−1)(f) + χ(p)pk−1am/p(Tpr−1f)− χ(p)pk−1am(Tpr−2f).

Using the induction hypothesis, we obtain

am(Tprf ) =
∑

d|(mp,pr−1)

χ(d)dk−1ampr/d2(f) + χ(p)pk−1
∑

d|(m/p,pr−1)

χ(d)dk−1ampr−2/d2(f)

− χ(p)pk−1
∑

p|(m,pr−2)

χ(d)dk−1ampr−2/d2(f). (2)

Note that the first term equals

ampr (f) +
∑

d|(mp,pr−1)
d>1

χ(d)dk−1ampr/d2(f).
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Rearranging the second term above shows that it equals minus the third term of (2), and
therefore that

am(Tprf) = ampr (f) + χ(p)pk−1
∑

d|(m/p,pr−1)

χ(d)dk−1ampr−2/d2(f).

By distributing χ(p)pk−1 above and reindexing to instead be summing over {d̃ = pd | (m, pr)},
we obtain the formula.

Now, let n1, n2 ∈ Z+ such that gcd(n1, n2) = 1. Then,

am(Tn1(Tn2(f))) =
∑

d|(m,n1)

χ(d)dk−1amn1/d2(Tn2f)

=
∑

d|(m,n1)

χ(d)dk−1
∑

e|(mn1/d2,n2)

χ(e)ek−1amn1n2/d2e2(f).

Once again rearranging the above series and using the fact that gcd(n1, n2) = 1 to merge the
two sums as one series indexed by {l = de | (m,n1n2)} finishes the proof.

2. Let f ∈ Mk(Γ1(N), χ) be a normalized Hecke eigenform and define its L-function to be the series

L(f, s) =

∞∑
n=1

an(f)n
−s.

This is a well-defined function when the real part of s ∈ C is large enough.

Express L(f, s) as an Euler product, i.e. find an expression of L(f, s) of the form

L(f, s) =
∏

p prime

Lp(f, s),

where Lp(f, s) is a complex function that depends on p, s, and the Fourier coefficient ap(f).

Hint: Use the intrinsic characterization of Hecke eigenforms proved in Proposition 3.2.34.

Solution: From ii. in Proposition 3.2.34, we know that a normalized Hecke eigenform is mul-
tiplicative. Hence, we can rewrite L(f, s) as∏

p, prime

(1 + ap(f)p
−s + ap2(f)p−2s + · · · ).

Moreover, condition iii. tells us that the series
∑∞

r=0 apr (f)xr equals

1

1− apx+ χ(p)pk−1x2
.

To see this, first note that

iii. =⇒ apr − apapr−1 + χ(p)pk−1apr−2 = 0.

Hence, after some rearranging,

∞∑
r=0

aprxr(1− apx+ χ(p)pk−1x2) = a1 + apx− apa1x

= 1, since we assumed f is normalized.

We conclude that

L(f, s) =

∞∑
n=1

an(f)n
−s =

∏
p, prime

1

1− app−s + χ(p)pk−1−2s
.
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