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1. (a) Show that the Eisenstein series E4 has a simple zero at z = ρ and no other zeros.

(b) Similarly, show that E6 has a simple zero at z = i and no other zeros.

Solution: See the solution to Problem Sheet 2, exercise 3.

2. Define the modular invariant j(z) =
E3

4

∆ . (This is an extremely important invariant, with applications
to the elliptic curves and class field theory. The coefficients in its q-expansion are famous for their
role in the moonshine conjecture, which links them to the representation theory of the monster
group.)

(a) Prove that j is a weakly modular function of weight 0.

Solution: For any γ =∈ PSL2(Z), we compute

j(γ ◦ z) = E3
4(γ ◦ z)

∆(γ ◦ z)
=

(cz + d)12E3
4(z)

(cz + d)12∆(z)
= j(z).

(b) Show that j is holomorphic on H and has a simple pole at ∞.

Solution: This follows directly from the basic properties of quotients of meromorphic func-
tions applied to j(z) for the statement on H, and applied to j(e2πiz) for the statement at
∞.

(c) Show that j induces a bijection PSL2(Z)\H ∼= C.

Solution: From (a), we see that j(z) doesn’t depend specifically on z but rather on the orbit
of z under the action of PSL2(Z). Hence, j induces a well-defined map from PSL2(Z)\H
to C, mapping each orbit to the image of one of its representatives.

Now, showing that this induced map is bijective is equivalent to showing that for any ξ ∈ C,
the map induced by the auxiliary function gξ := j(z)− ξ has a unique zero on PSL2(Z)\H.
We write

gξ(z) =
E3

4(z)− ξ∆(z)

∆(z)
,

and denote the numerator by hξ. The map hξ is clearly holomorphic on H and at ∞.
In fact, since ∆ vanishes at ∞ and E3

4 doesn’t, we additionally know that v∞(hξ) = 0.
Therefore, the valence formula yields

1

2
vi(hξ) +

1

3
vρ(hξ) +

∑
P∈W

vP (hξ) = 1,

where W is defined as usual. Since all the vanishing orders on the LHS are positive, you
can check that the only solutions are for hξ to vanish with order 3 at ρ or for hξ to vanish

1



with order 2 at i or for hξ to vanish with order 1 at a unique P ∈ W. In any case, the map
induced by hξ vanishes exactly once on PSL2(Z)\H. This implies that the same holds for
the map induced by gξ and finishes the proof.

3. Show that for any k ≥ 0, we have

|{(a, b) ∈ Z2
≥0 : 4a+ 6b = k}| = dimMk.

Solution: Remember that

dim(Mk) =

{
⌊k/12⌋+ 1, k ̸≡ 2 mod 12

⌊k/12⌋, k ≡ 2 mod 12

We solve the problem using induction in steps of 12.

• We claim that the cases k < 0, k is odd and k ∈ {0, 2, 4, 6, 8} are an easy check.

• Let k ≥ 12 and note that

dim(Mk−12) =

{
⌊k/12⌋, k ̸≡ 2 mod 12

⌊k/12⌋ − 1, k ≡ 2 mod 12

In any case, we reduced the problem to showing that the equation

4a+ 6b = k (1)

has always one more solution in (Z≥0)
2 than the equation

4a+ 6b = k − 12. (2)

Let us consider the map
Z2 → Z2

(a, b) 7→ (a, b+ 2)

This maps solutions of (2) to solutions of (1). The only solutions of (1) that might not be
in the image are those with b < 2. We show that such a solution always exists.

Let (a′, b′) be a solution of (1) (we can always pick one since the image of the map is
non-empty for all k ≥ 12, except for k = 14, but in this case we can obviously find a
solution). We have that 6b′ is congruent to 0 or 2 modulo 4. Hence there exists a unique
positive integer q and some r ∈ {0, 2} such that 6b′ = 4q + r. If r = 0, then (a′ + q, 0) is
a solution of (1). Otherwise, if r = 2, then (a′ + q − 1, 1) is a solution of (1). Note also
that by looking at k modulo 4, we see that there cannot be a solution of (1) with b = 0
and another one with b = 1. This concludes the proof.

4. Let n be a positive integer.

(a) Show (by quoting an appropriate theorem from your notes) that the dimension of M4n is 1+ j,
where j = ⌊n/3⌋. Hence show that the functions

En
4 , E

n−3
4 ∆, . . . , En−3j

4 ∆j

are a basis of M4n.
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Solution: By theorem 1.6.10,

dim(Mk) =

{
⌊k/12⌋+ 1, k ̸≡ 2 mod 12

⌊k/12⌋, k ≡ 2 mod 12

Since k = 4n is not congruent to 2 mod 12, we are always in the first case. We proceed by
induction in steps of 12. As before, we will let you check the cases n ∈ {0, 1, 2}. Assume
now that n ≥ 3. We have to show that the family

B := {En−3i
4 ∆i | 0 ≤ i ≤ j}

is linearly independent. First, note that there cannot be any non-trivial vanishing linear
combination of elements of B

j∑
i=0

αiE
n−3i
4 ∆i

in which α0 ̸= 0. Indeed, such a combination doesn’t vanish at ∞ since every non-trivial
power of ∆ does but non of the powers of E4 do. Moreover there cannot be any non-trivial
vanishing linear combination of elements of B′ := B \ {En

4 }. Indeed, factorising such a
combination by ∆ yields a non-trivial vanishing linear combination of elements of

B′′ := {En−3i
4 ∆i−1 | 1 ≤ i ≤ j}.

But by induction hypothesis, this is a basis for M4n−12, so this cannot happen. We conclude
that B is a linearly independent family with cardinality 1 + j and therefore forms a basis.

(b) Let M4n(Z) denote the Z-submodule of M4n consisting of modular forms whose q-expansions
have integer coefficients. Show that the above functions are a Z-basis of M4n(Z). (You may
assume that ∆ ∈ M12(Z).)

Solution: We recall that

E4 = 1 + 24

∞∑
n=1

σ3(n)q
n,

so E4 ∈ M4(Z) and En
4 ∈ M4n(Z) for all n ≥ 0. Since we assume it is also the case for ∆,

all the elements of B belong to M4n(Z). Assume that

f :=

j∑
i=0

αiE
n−3i
4 ∆i, αi ∈ C ∀i

is an element of M4n(Z). Since the vanishing order of En−3i
4 ∆i at ∞ is i, the first coefficient

in the q-expansion of f is α0. Therefore we must have α0 ∈ Z. We now let i ≥ 1 and we
assume that αk ∈ Z for k ≤ i − 1. The coefficient of qi in the expansion of f is (by
assumption) an integer and is given by

α0b
(0)
i + α1b

(1)
i + · · ·+ αi−1b

(i−1)
i + αi,

where b
(k)
i ∈ Z is the coefficient of qi in the expansion of En−3k

4 ∆k. This forces αi ∈ Z.
We conclude that αi ∈ Z for 0 ≤ i ≤ j. Since f was an arbitrary element of M4n(Z), this
concludes the proof.
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