Modular Forms: Problem Sheet 3

Sarah Zerbes

18th March 2022

1. (a) Show that the Eisenstein series E_{4} has a simple zero at $z=\rho$ and no other zeros.
(b) Similarly, show that E_{6} has a simple zero at $z=i$ and no other zeros.

Solution: See the solution to Problem Sheet 2, exercise 3.
2. Define the modular invariant $j(z)=\frac{E_{4}^{3}}{\Delta}$. (This is an extremely important invariant, with applications to the elliptic curves and class field theory. The coefficients in its q-expansion are famous for their role in the moonshine conjecture, which links them to the representation theory of the monster group.)
(a) Prove that j is a weakly modular function of weight 0 .

Solution: For any $\gamma=\in \operatorname{PSL}_{2}(\mathbb{Z})$, we compute

$$
j(\gamma \circ z)=\frac{E_{4}^{3}(\gamma \circ z)}{\Delta(\gamma \circ z)}=\frac{(c z+d)^{12} E_{4}^{3}(z)}{(c z+d)^{12} \Delta(z)}=j(z) .
$$

(b) Show that j is holomorphic on \mathcal{H} and has a simple pole at ∞.

Solution: This follows directly from the basic properties of quotients of meromorphic functions applied to $j(z)$ for the statement on \mathcal{H}, and applied to $j\left(e^{2 \pi i z}\right)$ for the statement at ∞.
(c) Show that j induces a bijection $\operatorname{PSL}_{2}(\mathbb{Z}) \backslash \mathcal{H} \cong \mathbb{C}$.

Solution: From (a), we see that $j(z)$ doesn't depend specifically on z but rather on the orbit of z under the action of $\mathrm{PSL}_{2}(\mathbb{Z})$. Hence, j induces a well-defined map from $\mathrm{PSL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ to \mathbb{C}, mapping each orbit to the image of one of its representatives.
Now, showing that this induced map is bijective is equivalent to showing that for any $\xi \in \mathbb{C}$, the map induced by the auxiliary function $g_{\xi}:=j(z)-\xi$ has a unique zero on $\mathrm{PSL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$. We write

$$
g_{\xi}(z)=\frac{E_{4}^{3}(z)-\xi \Delta(z)}{\Delta(z)}
$$

and denote the numerator by h_{ξ}. The map h_{ξ} is clearly holomorphic on \mathcal{H} and at ∞. In fact, since Δ vanishes at ∞ and E_{4}^{3} doesn't, we additionally know that $v_{\infty}\left(h_{\xi}\right)=0$. Therefore, the valence formula yields

$$
\frac{1}{2} v_{i}\left(h_{\xi}\right)+\frac{1}{3} v_{\rho}\left(h_{\xi}\right)+\sum_{P \in W} v_{P}\left(h_{\xi}\right)=1,
$$

where W is defined as usual. Since all the vanishing orders on the LHS are positive, you can check that the only solutions are for h_{ξ} to vanish with order 3 at ρ or for h_{ξ} to vanish
with order 2 at i or for h_{ξ} to vanish with order 1 at a unique $P \in W$. In any case, the map induced by h_{ξ} vanishes exactly once on $\mathrm{PSL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$. This implies that the same holds for the map induced by g_{ξ} and finishes the proof.
3. Show that for any $k \geq 0$, we have

$$
\left|\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 4 a+6 b=k\right\}\right|=\operatorname{dim} M_{k} .
$$

Solution: Remember that

$$
\operatorname{dim}\left(M_{k}\right)=\left\{\begin{array}{rrr}
\lfloor k / 12\rfloor+1, & k \not \equiv 2 & \bmod 12 \\
\lfloor k / 12\rfloor, & k \equiv 2 & \bmod 12
\end{array}\right.
$$

We solve the problem using induction in steps of 12 .

- We claim that the cases $k<0, k$ is odd and $k \in\{0,2,4,6,8\}$ are an easy check.
- Let $k \geq 12$ and note that

$$
\operatorname{dim}\left(M_{k-12}\right)=\left\{\begin{array}{rll}
\lfloor k / 12\rfloor, & k \not \equiv 2 & \bmod 12 \\
\lfloor k / 12\rfloor-1, & k \equiv 2 & \bmod 12
\end{array}\right.
$$

In any case, we reduced the problem to showing that the equation

$$
\begin{equation*}
4 a+6 b=k \tag{1}
\end{equation*}
$$

has always one more solution in $\left(\mathbb{Z}_{\geq 0}\right)^{2}$ than the equation

$$
\begin{equation*}
4 a+6 b=k-12 . \tag{2}
\end{equation*}
$$

Let us consider the map

$$
\begin{array}{ccc}
\mathbb{Z}^{2} & \rightarrow & \mathbb{Z}^{2} \\
(a, b) & \mapsto & (a, b+2)
\end{array}
$$

This maps solutions of (2) to solutions of (1). The only solutions of (1) that might not be in the image are those with $b<2$. We show that such a solution always exists.

Let $\left(a^{\prime}, b^{\prime}\right)$ be a solution of (1) (we can always pick one since the image of the map is non-empty for all $k \geq 12$, except for $k=14$, but in this case we can obviously find a solution). We have that $6 b^{\prime}$ is congruent to 0 or 2 modulo 4 . Hence there exists a unique positive integer q and some $r \in\{0,2\}$ such that $6 b^{\prime}=4 q+r$. If $r=0$, then $\left(a^{\prime}+q, 0\right)$ is a solution of (1). Otherwise, if $r=2$, then $\left(a^{\prime}+q-1,1\right)$ is a solution of (1). Note also that by looking at k modulo 4 , we see that there cannot be a solution of (1) with $b=0$ and another one with $b=1$. This concludes the proof.
4. Let n be a positive integer.
(a) Show (by quoting an appropriate theorem from your notes) that the dimension of $M_{4 n}$ is $1+j$, where $j=\lfloor n / 3\rfloor$. Hence show that the functions

$$
E_{4}^{n}, E_{4}^{n-3} \Delta, \ldots, E_{4}^{n-3 j} \Delta^{j}
$$

are a basis of $M_{4 n}$.

Solution: By theorem 1.6.10,

$$
\operatorname{dim}\left(M_{k}\right)=\left\{\begin{array}{rrr}
\lfloor k / 12\rfloor+1, & k \not \equiv 2 & \bmod 12 \\
\lfloor k / 12\rfloor, & k \equiv 2 & \bmod 12
\end{array}\right.
$$

Since $k=4 n$ is not congruent to $2 \bmod 12$, we are always in the first case. We proceed by induction in steps of 12 . As before, we will let you check the cases $n \in\{0,1,2\}$. Assume now that $n \geq 3$. We have to show that the family

$$
\mathcal{B}:=\left\{E_{4}^{n-3 i} \Delta^{i} \mid 0 \leq i \leq j\right\}
$$

is linearly independent. First, note that there cannot be any non-trivial vanishing linear combination of elements of \mathcal{B}

$$
\sum_{i=0}^{j} \alpha_{i} E_{4}^{n-3 i} \Delta^{i}
$$

in which $\alpha_{0} \neq 0$. Indeed, such a combination doesn't vanish at ∞ since every non-trivial power of Δ does but non of the powers of E_{4} do. Moreover there cannot be any non-trivial vanishing linear combination of elements of $\mathcal{B}^{\prime}:=\mathcal{B} \backslash\left\{E_{4}^{n}\right\}$. Indeed, factorising such a combination by Δ yields a non-trivial vanishing linear combination of elements of

$$
\mathcal{B}^{\prime \prime}:=\left\{E_{4}^{n-3 i} \Delta^{i-1} \mid 1 \leq i \leq j\right\}
$$

But by induction hypothesis, this is a basis for $M_{4 n-12}$, so this cannot happen. We conclude that \mathcal{B} is a linearly independent family with cardinality $1+j$ and therefore forms a basis.
(b) Let $M_{4 n}(\mathbb{Z})$ denote the \mathbb{Z}-submodule of $M_{4 n}$ consisting of modular forms whose q-expansions have integer coefficients. Show that the above functions are a \mathbb{Z}-basis of $M_{4 n}(\mathbb{Z})$. (You may assume that $\Delta \in M_{12}(\mathbb{Z})$.)

Solution: We recall that

$$
E_{4}=1+24 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}
$$

so $E_{4} \in M_{4}(\mathbb{Z})$ and $E_{4}^{n} \in M_{4 n}(\mathbb{Z})$ for all $n \geq 0$. Since we assume it is also the case for Δ, all the elements of \mathcal{B} belong to $M_{4 n}(\mathbb{Z})$. Assume that

$$
f:=\sum_{i=0}^{j} \alpha_{i} E_{4}^{n-3 i} \Delta^{i}, \alpha_{i} \in \mathbb{C} \forall i
$$

is an element of $M_{4 n}(\mathbb{Z})$. Since the vanishing order of $E_{4}^{n-3 i} \Delta^{i}$ at ∞ is i, the first coefficient in the q-expansion of f is α_{0}. Therefore we must have $\alpha_{0} \in \mathbb{Z}$. We now let $i \geq 1$ and we assume that $\alpha_{k} \in \mathbb{Z}$ for $k \leq i-1$. The coefficient of q^{i} in the expansion of f is (by assumption) an integer and is given by

$$
\alpha_{0} b_{i}^{(0)}+\alpha_{1} b_{i}^{(1)}+\cdots+\alpha_{i-1} b_{i}^{(i-1)}+\alpha_{i}
$$

where $b_{i}^{(k)} \in \mathbb{Z}$ is the coefficient of q^{i} in the expansion of $E_{4}^{n-3 k} \Delta^{k}$. This forces $\alpha_{i} \in \mathbb{Z}$. We conclude that $\alpha_{i} \in \mathbb{Z}$ for $0 \leq i \leq j$. Since f was an arbitrary element of $M_{4 n}(\mathbb{Z})$, this concludes the proof.

