
Modular Forms: Problem Sheet 5

Sarah Zerbes

3rd April 2022

1. Let Γ and Γ′ be congruence subgroups such that Γ′ ⊴ Γ.

(a) Show that if c, d ∈ C(Γ′) are equivalent in C(Γ), then hΓ′(c) = hΓ′(d).

Solution: Let c = [s]Γ′ and d = [d]Γ′ in C(Γ′) with [s]Γ = [t]Γ ∈ C(Γ), for s, t ∈ P1(Q).
Then there exists g ∈ Γ such that g · s = t. Additionally, let γs, γt ∈ SL2(Z) such that
γs · ∞ = s and γt · t = ∞. We checked in the lecture that

HΓ′,c = γ−1
s Γ′γs ∩ SL2(Z)∞

does not depend on the choice of γ ∈ SL2(Z) such that γ · ∞ = s. Hence,

HΓ′,c = (g−1γt)
−1Γ′(g−1γt) ∩ SL2(Z)∞

= γ−1
t Γ′γt ∩ SL2(Z)∞

= HΓ′,d,

where we used that Γ′ is normal in Γ to pass from the first line to the second. We conclude
that c and d have the same width in Γ′, by definition of the width of a cusp.

(b) Let c ∈ Cusps(Γ′). Show that ∑
d∈C(Γ′)

d=c in Cusps(Γ)

hΓ′(d) = [Γ : Γ′]hΓ(c).

Solution: We use Proposition 2.2.17 with G = Γ, H = Γ′ and X = {d ∈ C(Γ′) | d = c
mod Γ}. We obtain ∑

d∈X

[Γd : Γ′
d] = [Γ : Γ′]. (1)

Each of the summands in the LHS above equals

[PSL2(Z) : Γ′
d]

[PSL2(Z) : Γd]
.

The numerator is constant for all d ∈ X since any two elements of X are equivalent mod
Γ. More precisely, its value is hΓ(c) for all d ∈ X. We then compute that the LHS of (1)
equals

1

hΓ(c)

∑
d∈X

hΓ′(d)

and it concludes the proof.

(c) Hence show that for p odd, Γ1(p) has exactly p− 1 cusps.
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Solution: From the lectures we know that any cusp of Γ1(p), which we will denote Γ1, is
either equivalent to [∞] or to [0] mod Γ0(p), which we will denote Γ0. In order to use (a)
and (b), we first need to show that Γ1 is normal in Γ0 and we want to compute its index.
To this end note that Γ1 is the kernel of the surjective map

φ : Γ0 → (Z/pZ)∗(
a b
c d

)
7→ d

This shows that Γ1 is normal in Γ0 and that [Γ0 : Γ1] = p − 1. Now, since − Id ∈ Γ0 \ Γ1,
we compute [Γ0; Γ1] =

p−1
2 . We now apply the formula proven in (b) to the set of cusps of

Γ1 that are equivalent to ∞ mod Γ0. We obtain

hΓ0
(∞)

p− 1

2
=

∑
d∈C(Γ1)

d=[∞]modΓ0

hΓ1
(d) = N∞hΓ1

(∞),

where N∞ is the number of such cusps and where we used (a) to obtain the second equality.
We showed in the lectures that hΓ0

(∞) = 1, and using a similar argument we can show
that hΓ1

(∞) = 1. We deduce that N∞ = p−1
2 .

We proceed similarly for the set of cusps of Γ1 that are equivalent to [0] mod Γ0 and
conclude.

2. (a) Show that SL2(Z) contains an index 2 subgroup Γ which is congruence of level 2.

Solution: We are looking to find Γ ⊂ SL2(Z) such that Γ(2) ⊂ Γ and [SL2(Z) : Γ] = 2. We
first note that

SL2(Z)/Γ(2) ∼= SL2(Z/2Z)

is of order 6. Since 3 is a prime divisor of |SL2(Z/2Z)|, it must contain an element of order
3 by Cauchy’s theorem (you can also easily find by hand such an element). We denote such
an element g, and let g be a lift of g in SL2(Z). Defining Γ := ⟨Γ(2), g⟩, we have

[SL2(Z) : Γ] = [SL2(Z) : Γ(2)]/[Γ : Γ(2)] = 2.

(b) Show that the only cusp of Γ is [∞]. What is its width?

Solution: Let the element g taken above be the lift
(
0 −1
1 1

)
of g = ( 0 1

1 1 ) ∈ SL2(Z/2Z).
Note that since Γ is of index 2 in SL2(Z), it is a normal congruence subgroup. We are then
in the setting of problem 1 and have

N∞hΓ([∞]) = [PSL2(Z) : Γ],

where we let N∞ be the number of cusps of Γ that are equivalent to [∞] mod SL2(Z), which
is simply the number of cusps at level Γ. Since − Id ∈ Γ(2), we have

[PSL2(Z) : Γ] = [SL2(Z) : Γ] = 2.

Moreover, as ( 1 2
0 1 ) ∈ Γ(2), we have hΓ([∞]) < 2. The width of [∞] at level Γ is 1 if and

only if one of

± Id

(
1 1
0 1

)
,

(
−1 1
0 −1

)
belongs to Γ, or equivalently, if one of their representatives mod Γ(2) belongs to ⟨g⟩. Since
it is not the case, we conclude that hΓ([∞]) = 2 and therefore N∞ = |C(Γ)| = 1.
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3. Show that the cusp c = [1/2] of Γ1(4) is irregular, and find a generator of the corresponding subgroup
Hc.

Solution: We start by finding a γ ∈ SL2(Z) such that γ · ∞ = 1
2 . Here, we let γ = ( 1 0

2 1 ). In
order to find Hc, we now compute that for any

(
a b
c d

)
∈ Γ1(4), we have

γ−1

(
a b
c d

)
γ =

(
a+ 2b b

c− 2a+ 2d− 4b d− 2b

)
=: A.

If A is to be in Hc, it has to act trivially on ∞. Hence we must have

c− 2a+ 2d− 4b = 0.

This directly implies that a+ 2b = d− 2b ∈ {±1}.

• Assume first that 1 = d− 2b = a+2b and note that d− 2b ≡ a+2b ≡ 1+2b mod 4. Then
2b ≡ 0 mod 4, so there is some k ∈ Z such that b = 2k and

A =

(
1 2k
0 1

)
.

Conversely, we check that for any matrix of this form with k ∈ Z, there exist a, b, c and d
such that 

a+ 2b = 1
b = 2k
c− 2a = 2d− 4b = 0
d− 2b = 1

and

(
a b
c d

)
∈ Γ1(4).

• Assume now that −1 = d − 2b = a + 2b. We still have d − 2b ≡ a + 2b ≡ 1 + 2b mod 4,
which implies 2b ≡ 2 mod 4. So, there exists some k ∈ Z such that b = 2(2k + 1) and

A =

(
1 2(2k + 1)
0 1

)
.

Similarly as above, we check the converse statement, i.e. we check that for any matrix A
as above there exists a matrix B ∈ Γ1(4) so that γ−1Bγ = A.

We conclude that
Hc =

{
(−1)t ( 1 2t

0 1 ) | t ∈ Z
}
,

which shows that [1/2] is irregular, and we read off it that the width of [1/2] in Γ1(4) is 2.

4. Let Γ and Γ′ be congruence subgroups such that Γ′ ⊴ Γ. Let f be a meromorphic function on H
that is weakly modular of weight k for Γ. Let P ′ ∈ Cusps(Γ′), and let P be its image in Cusps(Γ).
Then f is holomorphic at P if and only f (viewed as a weakly modular function of weight k for Γ′)
is holomorphic at P ′. Also show that f vanishes at P if and only if f vanishes at P ′.

Solution: Let s, t ∈ P1(Q) such that [t]Γ′ = P ′, [s]Γ′ = P = [s]Γ. Since s and t are congruent
mod Γ, there exists some g ∈ Γ such that g · t = s. Define γs, γt ∈ SL2(Z) as usual. Then

vP,Γ′(f) = v∞,γ−1
s Γ′γs

(f |kγs) = v∞,(gγt)−1Γ′(gγt)(f |kgγt) = v∞,γ−1
t Γ′γt

(f |kγt),

where we used that Γ′ is normal in Γ and that f is weakly modular of weight k with respect to
Γ to obtain the last equality. We deduce from this that, as a weakly modular function of level
Γ′, the vanishing orders of f at P and at P ′ coincide. Moreover, passing from level Γ′ to level
Γ might modify the width of the cusp P but not the fact that f is holomorphic nor whether or
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not f vanishes at P . Indeed, the order of vanishing of f at P at level Γ (resp. Γ′) is defined as
the order of vanishing of f |kγs at [∞] at level γ−1

s Γγs (resp. γ−1
s Γ′γs). Comparing both Fourier

expansions as given in the proof of Lemma 2.5.1., we obtain the result.
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