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1. Let I" and IV be congruence subgroups such that IV < T'.
(a) Show that if ¢,d € C(I") are equivalent in C(T"), then hr/(¢) = hr/(d).

Solution: Let ¢ = [s]rs and d = [d]rr in C(I) with [s]r = [t]r € C(T), for s,t € PYH(Q).
Then there exists g € T such that g - s = ¢t. Additionally, let ~s,v: € SLa(Z) such that
vs - 00 = s and 7 - t = co. We checked in the lecture that

Hrs o =4, ' T N SLa(Z) oo
does not depend on the choice of v € SLy(Z) such that v - co = s. Hence,

Hrre= (g7 %) ' (g7 ') NSLa(Z)
= T/ N SLy(Z) oo
= HF',da

where we used that I' is normal in T" to pass from the first line to the second. We conclude
that ¢ and d have the same width in IV, by definition of the width of a cusp.

(b) Let ¢ € Cusps(I”). Show that

> hro(d) = [T : T'hp(c).
dec(r’)
d=c in Cusps(T")

Solution: We use Proposition 2.2.17 with G =T, H =T" and X = {d € C(I") | d = ¢
mod I'}. We obtain
deX

Each of the summands in the LHS above equals

[PSL(Z) : T'4]
[PSL2(Z) : Tq]
The numerator is constant for all d € X since any two elements of X are equivalent mod

I'. More precisely, its value is hp(c) for all d € X. We then compute that the LHS of (1)
equals

hl"l(C) Z hr(d)

deX

and it concludes the proof.

(¢) Hence show that for p odd, T';(p) has exactly p — 1 cusps.



Solution: From the lectures we know that any cusp of I'; (p), which we will denote I'y, is
either equivalent to [0o] or to [0] mod I'y(p), which we will denote I'g. In order to use (a)
and (b), we first need to show that I'; is normal in 'y and we want to compute its index.
To this end note that I'y is the kernel of the surjective map

I — (Z/pZ)"
a b
<C d) —> d
This shows that I'; is normal in Iy and that [Ty : T'1] = p — 1. Now, since —Id € Ty \ T'y,

we compute [[o; 1] = %. We now apply the formula proven in (b) to the set of cusps of
I’y that are equivalent to co mod I'y. We obtain

p—1
hr, (OO>T = Z hr, (d) = Noohr, (OO>7
deC(T'y)
d=[oo]mod@y

where N is the number of such cusps and where we used (a) to obtain the second equality.
We showed in the lectures that hr,(cc) = 1, and using a similar argument we can show

that hr, (c0) = 1. We deduce that N, = ’72;1.

We proceed similarly for the set of cusps of I'y that are equivalent to [0] mod T’y and
conclude.

Show that SLs(Z) contains an index 2 subgroup I' which is congruence of level 2.

Solution: We are looking to find I' C SLy(Z) such that I'(2) C T and [SLy(Z) : I'] = 2. We
first note that
SL2(Z)/T(2) = SLy(Z/27)

is of order 6. Since 3 is a prime divisor of |SLz(Z/2Z)|, it must contain an element of order
3 by Cauchy’s theorem (you can also easily find by hand such an element). We denote such
an element g, and let g be a lift of § in SLy(Z). Defining I" := (I'(2), g), we have

[SLy(Z) : T] = [SLo(Z) : T(2)]/[T : T(2)] = 2.

Show that the only cusp of I' is [co]. What is its width?

Solution: Let the element g taken above be the lift (9 7') of g = (91) € SL2(Z/2Z).

Note that since T is of index 2 in SLy(Z), it is a normal congruence subgroup. We are then
in the setting of problem 1 and have
Noohp([oo]) = [PSLQ(Z) :f]7

where we let N, be the number of cusps of T' that are equivalent to [oo] mod SLa(Z), which
is simply the number of cusps at level I'. Since —Id € I'(2), we have

[PSLy(Z) : T] = [SLy(Z) : T] = 2.

Moreover, as (§ %) € I'(2), we have hp([oo]) < 2. The width of [oco] at level T is 1 if and

only if one of
11 -1 1
“ufo ) (02

belongs to I', or equivalently, if one of their representatives mod I'(2) belongs to (g). Since
it is not the case, we conclude that hr([oo]) = 2 and therefore Noo = |C(T")| = 1.
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3. Show that the cusp ¢ = [1/2] of T'; (4) is irregular, and find a generator of the corresponding subgroup
H,.

Solution: We start by finding a v € SL2(Z) such that v - co = 2. Here, we let v = (3¢). In
order to find H,., we now compute that for any (‘; g) € T'1(4), we have

_1{a b _ a+2b b _.4
T \e a)7 " \e—2a+2d—ab d—2v) T

If Ais to be in H,, it has to act trivially on co. Hence we must have

l\')

c—2a+2d—4b=0.
This directly implies that a +2b =d — 2b € {£1}.

o Assume first that 1 = d —2b = a + 2b and note that d —2b = a+2b=1+2b mod 4. Then
2b =0 mod 4, so there is some k € Z such that b = 2k and

1 2k
a=(p )

Conversely, we check that for any matrix of this form with k € Z, there exist a, b, ¢ and d

such that
a+2b=1
b= 2k a b
c—2a=2d— =0 ™ (c d)er1(4)'
d—2=1

e Assume now that —1 = d — 2b = a + 2b. We still have d —2b =a + 2b =1+ 2b mod 4,
which implies 2b = 2 mod 4. So, there exists some k € Z such that b = 2(2k + 1) and

A <(1) 2(2k1+ 1)> .

Similarly as above, we check the converse statement, i.e. we check that for any matrix A
as above there exists a matrix B € I'1(4) so that v~ 1By = A.

We conclude that
_ { 1 2t ‘ te Z}

which shows that [1/2] is irregular, and we read off it that the width of [1/2] in T';(4) is 2.

4. Let T" and I be congruence subgroups such that IV < T". Let f be a meromorphic function on H
that is weakly modular of weight k for I'. Let P’ € Cusps(I”), and let P be its image in Cusps(T).
Then f is holomorphic at P if and only f (viewed as a weakly modular function of weight k for TV)
is holomorphic at P’. Also show that f vanishes at P if and only if f vanishes at P’.

Solution: Let s,t € P1(Q) such that [t]rr = P, [s]rr = P = [s]r. Since s and t are congruent
mod I, there exists some g € I" such that g - ¢t = s. Define 7,7 € SLa(Z) as usual. Then

UP,F/(f) = Vo yi ', (f|k7€) = VUoo,(gve) =T (gve) ( |kg'Yt) oo,-yt*lr/»yt(f‘k'yt)a

where we used that T is normal in I" and that f is weakly modular of weight k with respect to
I" to obtain the last equality. We deduce from this that, as a weakly modular function of level
IV, the vanishing orders of f at P and at P’ coincide. Moreover, passing from level IV to level
I" might modify the width of the cusp P but not the fact that f is holomorphic nor whether or
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not f vanishes at P. Indeed, the order of vanishing of f at P at level I" (resp. I"”) is defined as
the order of vanishing of f|r7s at [oo] at level 47Ty, (resp. v; 'I"v,). Comparing both Fourier
expansions as given in the proof of Lemma 2.5.1., we obtain the result.
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