# Modular Forms: Problem Sheet 5 

Sarah Zerbes

3rd April 2022

1. Let $\Gamma$ and $\Gamma^{\prime}$ be congruence subgroups such that $\Gamma^{\prime} \unlhd \Gamma$.
(a) Show that if $c, d \in C\left(\Gamma^{\prime}\right)$ are equivalent in $C(\Gamma)$, then $h_{\Gamma^{\prime}}(c)=h_{\Gamma^{\prime}}(d)$.

Solution: Let $c=[s]_{\Gamma^{\prime}}$ and $d=[d]_{\Gamma^{\prime}}$ in $C\left(\Gamma^{\prime}\right)$ with $[s]_{\Gamma}=[t]_{\Gamma} \in C(\Gamma)$, for $s, t \in \mathbb{P}^{1}(\mathbb{Q})$. Then there exists $g \in \Gamma$ such that $g \cdot s=t$. Additionally, let $\gamma_{s}, \gamma_{t} \in \operatorname{SL}_{2}(\mathbb{Z})$ such that $\gamma_{s} \cdot \infty=s$ and $\gamma_{t} \cdot t=\infty$. We checked in the lecture that

$$
H_{\Gamma^{\prime}, c}=\gamma_{s}^{-1} \Gamma^{\prime} \gamma_{s} \cap \mathrm{SL}_{2}(\mathbb{Z})_{\infty}
$$

does not depend on the choice of $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\gamma \cdot \infty=s$. Hence,

$$
\begin{aligned}
H_{\Gamma^{\prime}, c} & =\left(g^{-1} \gamma_{t}\right)^{-1} \Gamma^{\prime}\left(g^{-1} \gamma_{t}\right) \cap \mathrm{SL}_{2}(\mathbb{Z})_{\infty} \\
& =\gamma_{t}^{-1} \Gamma^{\prime} \gamma_{t} \cap \mathrm{SL}_{2}(\mathbb{Z})_{\infty} \\
& =H_{\Gamma^{\prime}, d}
\end{aligned}
$$

where we used that $\Gamma^{\prime}$ is normal in $\Gamma$ to pass from the first line to the second. We conclude that $c$ and $d$ have the same width in $\Gamma^{\prime}$, by definition of the width of a cusp.
(b) Let $c \in \operatorname{Cusps}\left(\Gamma^{\prime}\right)$. Show that

$$
\sum_{\substack{d \in C\left(\Gamma^{\prime}\right) \\ d=c \text { in } \operatorname{Cusps}(\Gamma)}} h_{\Gamma^{\prime}}(d)=\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] h_{\Gamma}(c) .
$$

Solution: We use Proposition 2.2 .17 with $G=\bar{\Gamma}, H=\overline{\Gamma^{\prime}}$ and $X=\left\{d \in C\left(\Gamma^{\prime}\right) \mid d=c\right.$ $\bmod \Gamma\}$. We obtain

$$
\begin{equation*}
\sum_{d \in X}\left[\bar{\Gamma}_{d}: \overline{\Gamma^{\prime}}{ }_{d}\right]=\left[\bar{\Gamma}: \overline{\Gamma^{\prime}}\right] . \tag{1}
\end{equation*}
$$

Each of the summands in the LHS above equals

$$
\frac{\left[\operatorname{PSL}_{2}(\mathbb{Z}): \overline{\Gamma^{\prime}} d\right]}{\left[\operatorname{PSL}_{2}(\mathbb{Z}): \bar{\Gamma}_{d}\right]}
$$

The numerator is constant for all $d \in X$ since any two elements of $X$ are equivalent mod $\Gamma$. More precisely, its value is $h_{\Gamma}(c)$ for all $d \in X$. We then compute that the LHS of (1) equals

$$
\frac{1}{h_{\Gamma}(c)} \sum_{d \in X} h_{\Gamma^{\prime}}(d)
$$

and it concludes the proof.
(c) Hence show that for $p$ odd, $\Gamma_{1}(p)$ has exactly $p-1$ cusps.

Solution: From the lectures we know that any cusp of $\Gamma_{1}(p)$, which we will denote $\Gamma_{1}$, is either equivalent to $[\infty]$ or to $[0] \bmod \Gamma_{0}(p)$, which we will denote $\Gamma_{0}$. In order to use ( $a$ ) and $(b)$, we first need to show that $\Gamma_{1}$ is normal in $\Gamma_{0}$ and we want to compute its index. To this end note that $\Gamma_{1}$ is the kernel of the surjective map

$$
\varphi: \begin{array}{ccc}
\Gamma_{0} & \rightarrow & (\mathbb{Z} / p \mathbb{Z})^{*} \\
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) & \mapsto & d
\end{array}
$$

This shows that $\Gamma_{1}$ is normal in $\Gamma_{0}$ and that $\left[\Gamma_{0}: \Gamma_{1}\right]=p-1$. Now, since $-\operatorname{Id} \in \Gamma_{0} \backslash \Gamma_{1}$, we compute $\left[\overline{\Gamma_{0}} ; \overline{\Gamma_{1}}\right]=\frac{p-1}{2}$. We now apply the formula proven in $(b)$ to the set of cusps of $\Gamma_{1}$ that are equivalent to $\infty \bmod \Gamma_{0}$. We obtain

$$
h_{\Gamma_{0}}(\infty) \frac{p-1}{2}=\sum_{\substack{d \in C\left(\Gamma_{1}\right) \\ d=[\infty] \bmod \Gamma_{0}}} h_{\Gamma_{1}}(d)=N_{\infty} h_{\Gamma_{1}}(\infty),
$$

where $N_{\infty}$ is the number of such cusps and where we used $(a)$ to obtain the second equality. We showed in the lectures that $h_{\Gamma_{0}}(\infty)=1$, and using a similar argument we can show that $h_{\Gamma_{1}}(\infty)=1$. We deduce that $N_{\infty}=\frac{p-1}{2}$.
We proceed similarly for the set of cusps of $\Gamma_{1}$ that are equivalent to $[0] \bmod \Gamma_{0}$ and conclude.
2. (a) Show that $\mathrm{SL}_{2}(\mathbb{Z})$ contains an index 2 subgroup $\Gamma$ which is congruence of level 2.

Solution: We are looking to find $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ such that $\Gamma(2) \subset \Gamma$ and $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]=2$. We first note that

$$
\mathrm{SL}_{2}(\mathbb{Z}) / \Gamma(2) \cong \mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})
$$

is of order 6 . Since 3 is a prime divisor of $\left|\mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})\right|$, it must contain an element of order 3 by Cauchy's theorem (you can also easily find by hand such an element). We denote such an element $\bar{g}$, and let $g$ be a lift of $\bar{g}$ in $\mathrm{SL}_{2}(\mathbb{Z})$. Defining $\Gamma:=\langle\Gamma(2), g\rangle$, we have

$$
\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma(2)\right] /[\Gamma: \Gamma(2)]=2
$$

(b) Show that the only cusp of $\Gamma$ is $[\infty]$. What is its width?

Solution: Let the element $g$ taken above be the lift $\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ of $\bar{g}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$. Note that since $\Gamma$ is of index 2 in $\mathrm{SL}_{2}(\mathbb{Z})$, it is a normal congruence subgroup. We are then in the setting of problem 1 and have

$$
N_{\infty} h_{\Gamma}([\infty])=\left[\operatorname{PSL}_{2}(\mathbb{Z}): \bar{\Gamma}\right],
$$

where we let $N_{\infty}$ be the number of cusps of $\Gamma$ that are equivalent to $[\infty] \bmod \mathrm{SL}_{2}(\mathbb{Z})$, which is simply the number of cusps at level $\Gamma$. Since - Id $\in \Gamma(2)$, we have

$$
\left[\mathrm{PSL}_{2}(\mathbb{Z}): \bar{\Gamma}\right]=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]=2
$$

Moreover, as $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) \in \Gamma(2)$, we have $h_{\Gamma}([\infty])<2$. The width of $[\infty]$ at level $\Gamma$ is 1 if and only if one of

$$
\pm \operatorname{Id}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

belongs to $\Gamma$, or equivalently, if one of their representatives $\bmod \Gamma(2)$ belongs to $\langle\bar{g}\rangle$. Since it is not the case, we conclude that $h_{\Gamma}([\infty])=2$ and therefore $N_{\infty}=|C(\Gamma)|=1$.
3. Show that the cusp $c=[1 / 2]$ of $\Gamma_{1}(4)$ is irregular, and find a generator of the corresponding subgroup $H_{c}$.

Solution: We start by finding a $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\gamma \cdot \infty=\frac{1}{2}$. Here, we let $\gamma=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$. In order to find $H_{c}$, we now compute that for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}(4)$, we have

$$
\gamma^{-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \gamma=\left(\begin{array}{cc}
a+2 b & b \\
c-2 a+2 d-4 b & d-2 b
\end{array}\right)=: A .
$$

If $A$ is to be in $H_{c}$, it has to act trivially on $\infty$. Hence we must have

$$
c-2 a+2 d-4 b=0
$$

This directly implies that $a+2 b=d-2 b \in\{ \pm 1\}$.

- Assume first that $1=d-2 b=a+2 b$ and note that $d-2 b \equiv a+2 b \equiv 1+2 b \bmod 4$. Then $2 b \equiv 0 \bmod 4$, so there is some $k \in \mathbb{Z}$ such that $b=2 k$ and

$$
A=\left(\begin{array}{cc}
1 & 2 k \\
0 & 1
\end{array}\right)
$$

Conversely, we check that for any matrix of this form with $k \in \mathbb{Z}$, there exist $a, b, c$ and $d$ such that

$$
\left\{\begin{array}{l}
a+2 b=1 \\
b=2 k \\
c-2 a=2 d-4 b=0 \\
d-2 b=1
\end{array} \quad \text { and } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{1}(4)\right.
$$

- Assume now that $-1=d-2 b=a+2 b$. We still have $d-2 b \equiv a+2 b \equiv 1+2 b \bmod 4$, which implies $2 b \equiv 2 \bmod 4$. So, there exists some $k \in \mathbb{Z}$ such that $b=2(2 k+1)$ and

$$
A=\left(\begin{array}{cc}
1 & 2(2 k+1) \\
0 & 1
\end{array}\right) .
$$

Similarly as above, we check the converse statement, i.e. we check that for any matrix $A$ as above there exists a matrix $B \in \Gamma_{1}(4)$ so that $\gamma^{-1} B \gamma=A$.

We conclude that

$$
H_{c}=\left\{\left.(-1)^{t}\left(\begin{array}{cc}
1 & 2 t \\
0 & 1
\end{array}\right) \right\rvert\, t \in \mathbb{Z}\right\},
$$

which shows that [1/2] is irregular, and we read off it that the width of $[1 / 2]$ in $\Gamma_{1}(4)$ is 2.
4. Let $\Gamma$ and $\Gamma^{\prime}$ be congruence subgroups such that $\Gamma^{\prime} \unlhd \Gamma$. Let $f$ be a meromorphic function on $\mathcal{H}$ that is weakly modular of weight $k$ for $\Gamma$. Let $P^{\prime} \in \operatorname{Cusps}\left(\Gamma^{\prime}\right)$, and let $P$ be its image in $\operatorname{Cusps}(\Gamma)$. Then $f$ is holomorphic at $P$ if and only $f$ (viewed as a weakly modular function of weight $k$ for $\Gamma^{\prime}$ ) is holomorphic at $P^{\prime}$. Also show that $f$ vanishes at $P$ if and only if $f$ vanishes at $P^{\prime}$.

Solution: Let $s, t \in \mathbb{P}^{1}(\mathbb{Q})$ such that $[t]_{\Gamma^{\prime}}=P^{\prime},[s]_{\Gamma^{\prime}}=P=[s]_{\Gamma}$. Since $s$ and $t$ are congruent $\bmod \Gamma$, there exists some $g \in \Gamma$ such that $g \cdot t=s$. Define $\gamma_{s}, \gamma_{t} \in \mathrm{SL}_{2}(\mathbb{Z})$ as usual. Then

$$
v_{P, \Gamma^{\prime}}(f)=v_{\infty, \gamma_{s}^{-1} \Gamma^{\prime} \gamma_{s}}\left(\left.f\right|_{k} \gamma_{s}\right)=v_{\infty,\left(g \gamma_{t}\right)^{-1} \Gamma^{\prime}\left(g \gamma_{t}\right)}\left(\left.f\right|_{k} g \gamma_{t}\right)=v_{\infty, \gamma_{t}^{-1} \Gamma^{\prime} \gamma_{t}}\left(\left.f\right|_{k} \gamma_{t}\right)
$$

where we used that $\Gamma^{\prime}$ is normal in $\Gamma$ and that $f$ is weakly modular of weight $k$ with respect to $\Gamma$ to obtain the last equality. We deduce from this that, as a weakly modular function of level $\Gamma^{\prime}$, the vanishing orders of $f$ at $P$ and at $P^{\prime}$ coincide. Moreover, passing from level $\Gamma^{\prime}$ to level $\Gamma$ might modify the width of the cusp $P$ but not the fact that $f$ is holomorphic nor whether or
not $f$ vanishes at $P$. Indeed, the order of vanishing of $f$ at P at level $\Gamma$ (resp. $\Gamma^{\prime}$ ) is defined as the order of vanishing of $\left.f\right|_{k} \gamma_{s}$ at $[\infty]$ at level $\gamma_{s}^{-1} \Gamma \gamma_{s}\left(\right.$ resp. $\gamma_{s}^{-1} \Gamma^{\prime} \gamma_{s}$ ). Comparing both Fourier expansions as given in the proof of Lemma 2.5.1., we obtain the result.

