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1. Show that if f is a non-zero weakly modular function of weight k, level Γ, and g ∈ SL2(Z), we have

vP (f |kg) = vgP (f)

for all P ∈ Cusps(Γ).

Solution: As explained in the exercise class, this exercise aims to prove that the cusp part of

VΓ(f) =
∑

z∈Γ\H

vz(f)

nΓ(z)
+

∑
P∈C(Γ)

vP (f)

equals that of Vg−1Γg(f |k). So, we want to show that

vP,g−1Γg(f |k) = vgP,Γ(f).

Let P = [t], t ∈ P1(Q), and let γt ∈ SL2(Z) such that γt · ∞ = t.

First note that
C(g−1Γg) → C(Γ)
P = [t] 7→ gP = [gt]

is a well-defined bijective map.

Then we compute that

vP,g−1Γg(f |kg) = v∞,γ−1
t g−1Γgγt

(f |k(gγt))

vgP,Γ(f) = v∞,(gγt)−1Γgγt
(f |k(gγt)).

2. Show that for the function F (z) =
∏d

i=1(f |kgi)(z) defined in the proof of Theorem 2.6.3, we have

VΓ′(F ) =
d∑

i=1

VΓ′(f |kgi).

Solution: let ∈ H. it is clear (writing the Laurent expansion) that

vz(fg) = vz(f) + vz(g).

Hence, ∑
z∈H

vz(F )

nΓ(z)
=

∑
z∈Γ\H

∑d
i=1 vz(f |kgi)
nΓ(z)

=

d∑
i=1

∑
z∈Γ\H

vz(f |kgi)
nΓ(z)

.

The exchange of the sums cam be justified by a purely complex-analytic argument proving the
finiteness of the number of zeroes of f (it is also justified a posteriori since after switching the
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order, the double sum converges absolutely by the valence formula). We proceed similarly with
the cusp part (we can exchange the order of summation since the number of cusps is finite).
This proves the statement.

3. Let F (z) = E4(2z), so F ∈ M4(Γ0(2)).

(a) Show that F (∞) = 1 and F (0) = 1
16 .

Solution: You can find the Sage code I used to check my computations in the appendix. Let
Γ = Γ0(2). If we denote

∑∞
n=0 anq

n the q-expansion of E4 at∞, we have that F (z) = E4(2z)
expands as

∑∞
n=0 anq

2n. Therefore, F (∞) = E4(∞) = 1.

Let us compute the expansion of F at [0] ∈ C(Γ). Letting γ0 :=
(
0 −1
1 0

)
such that γ0 ·∞ = 0,

we want to compute the value of F |4γ0 at ∞ and at level γ−1
0 Γγ0. We have

F |4γ0(z) = z−4F (−1/z) = z−4E4(−2/z).

Letting z′ = z/2, we obtain

F |4γ0(z) =
1

16
(z′)−4E4(−1/z′) =

1

16
E4(z

′) =
1

16

∞∑
n=0

anq
1/2.

We deduce F ([0]) = 1
16E4([0]) =

1
16 .

(b) Hence show that the subspace of M8(Γ0(2)) spanned by E2
4 , E4F and F 2 is 3-dimensional, and

contains a unique cusp form f with a1(f) = 1. Calculate the q-expansion of this form as far as
the q3 term.

Solution: Let
G(z) = α0E

2
4(z) + α1E4F (z) + α2F

2(z),

and assume that G ≡ 0. It must then vanish at all the cusps and we obtain α0 + α1 + α2 = 0

α0 +
1
16α1

1
162α2 = 0

⇐⇒

 α0 = 1
16α2

α1 = − 17
16α2

Hence any form f ∈ ⟨E2
4 , E4F, F

2⟩ is cuspidal if and only if f ∈ C · ( 1
16E

2
4 − 17

16E4F + F 2).
Also recall that E4 has a simple and unique zero at ρ. This implies

G(ρ) = αE4(2ρ)
2.

Since 2ρ ̸≡ ρ mod SL2(Z), this will vanish if and only if α = 0. We conclude that
⟨E2

4 , E4F, F
2⟩ is three-dimensional.

By looking at the q-expansion of a generic cusp form

fα =
1

16
αE4 −

17

16
αE4F = αF 2,

we see that a1(fα) = 1 if and only if α = 2B4

15 . We let f = f2B4/15 and compute that
f = q − 8q2 + 12q3 +O(q4) around the cusp ∞.

(c) Use the valence formula and its corollaries to show that

i. the functions {E2
4 , E4F, F

2} are a basis of M8(Γ0(2)),

Page 2



Solution: By Corollary 2.6.9,

dim(M8(Γ)) ≤ 1 +

⌊
8 · 3
12

⌋
= 3.

ii. f(z) = ∆(z)+256∆(2z)
E4(z)

.

Solution: Since E4 =
∑∞

n=0 anq
n doesn’t vanish at ∞, we can invert its q-expansion

at ∞, i.e. there exists a power series Ẽ4 =
∑∞

n=0 bnq
n such that E4Ẽ4 = 1. The

coefficients of Ẽ4 can be computed inductively and have the general form

bj = − 1

a0
(a1bj−1 + a2bj−2 + · · ·+ ajb0) .

After a few computations, we obtain

(∆(z) + 256∆(2z))Ẽ4(z) = q − 8q2 + 12q3 +O(q4).

We now use Corollary 2.6.8 and conclude.

Page 3



A Sage code

R.<q> = PowerSeriesRing(QQ)

E_4 = eisenstein_series_qexp (4,20, normalization=’constant ’)

"""the first parameter is the weight , the second one is the number of terms

and the ’constant ’ indicates we want it to be normalized so that the constant

term equals 1"""

E_6 = eisenstein_series_qexp (6,20, normalization=’constant ’)

Delta = (E_4^3 - E_6 ^2)/1728

g = (Delta +256* Delta(q^2))/ E_4; g

alpha = (2* bernoulli (4))/15

f = (1/16)* alpha*E_4^2 - (17/16)* alpha*E_4*E_4(q^2) + alpha*E_4(q^2)^2; f
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