Modular Forms: Problem Sheet 7

Sarah Zerbes

25th April 2022

1. Let $E_{2}(z)$ be as defined in Definition 1.7.1.
(a) Show that for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
(c z+d)^{-2} E_{2}\left(\frac{a z+b}{c z+d}\right)=E_{2}(z)-\frac{6 i c}{\pi(c z+d)}
$$

Solution: We let the reader check that the formula holds for $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and for $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ (see Serre's "A course in Arithmetic" for the second formula). We will show that if the formula holds for some given $\gamma_{1}=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ and $\gamma_{2}=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, then it holds for the product. We recall that $j\left(\gamma_{1} \gamma_{2}, z\right)=j\left(\gamma_{1}, \gamma_{2} z\right) j\left(\gamma_{2}, z\right)$. Hence,

$$
\begin{aligned}
E_{2}\left(\gamma_{1} \gamma_{2} z\right) j\left(\gamma_{1} \gamma_{2}, z\right)^{-2} & =E\left(\gamma_{1} \gamma_{2} z\right) j\left(\gamma_{1}, \gamma_{2} z\right)^{-2} j\left(\gamma_{2}, z\right)^{-2} \\
& =\left(E_{2}\left(\gamma_{2} z\right)-\frac{6 i c}{\pi\left(c \gamma_{2} z+d\right)}\right) j\left(\gamma_{2}, z\right)^{-2} \\
& =E_{2}(z)-\frac{6 i c^{\prime}}{\pi\left(c^{\prime} z+d^{\prime}\right)}-\frac{6 i c}{\pi\left(c \gamma_{2} z+d\right)} j\left(\gamma_{2}, z\right)^{-2} .
\end{aligned}
$$

We let C, D denote the bottom row of $\gamma_{1} \gamma_{2}$. We have reduced the proof to showing that

$$
\begin{array}{rlc}
\frac{c^{\prime}}{j\left(\gamma_{2}, z\right)}+\frac{c}{j\left(\gamma_{1}, \gamma_{2} z\right)} j\left(\gamma_{2}, z\right)^{-2} & =\frac{C}{j\left(\gamma_{1} \gamma_{2}, z\right)} \\
\Longleftrightarrow \quad j\left(\gamma_{2}, z\right) C-j\left(\gamma_{1} \gamma_{2}, z\right) c^{\prime} & =c
\end{array}
$$

We let the reader check that this is indeed the case.
(b) For $N \geq 2$, define

$$
E_{2}^{(N)}(z)=E_{2}(z)-N E_{2}(N z) .
$$

Show that the function $E_{2}^{(N)}(z)$ is a modular form of weight 2 and level $\Gamma_{0}(N)$, and determine its values at the cusps [0] and ∞.

Solution: Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$. Then,

$$
E_{2}^{(N)}(z) j(\gamma z) j(\gamma, z)^{-2}=E_{2}(\gamma z) j(\gamma, z)^{-2}-N E_{2}\left(\frac{a N z+b N}{(c / N) N z+d}\right) j(\gamma, z)^{-2}
$$

Since $\gamma^{\prime}=\left(\begin{array}{cc}a & b N \\ c / N & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ with $j\left(\gamma^{\prime}, N z\right)=j(\gamma, z)$, we can apply the transformation formula to the right-hand side above and obtain

$$
E_{2}(z)-\frac{6 i c}{\pi j(\gamma, z)}-N\left(E_{2}(N z)+\frac{6 i(c / N)}{\pi j(\gamma, z)}\right)=E_{2}^{(N)}(z)
$$

We evaluate $E_{2}^{(N)}$ at the cusp ∞, i.e. we have to compute the first term of the q-expansion of $E_{2}(z)-N E_{2}(N z)$ when z is in a small enough neighbourhood of infinity. We have computed in Lemma 1.7.2 that

$$
E_{2}(z)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

in a neighbourhood of ∞. Now, letting $z^{\prime}=N z$ and reasoning similarly as for $E_{2}(z)$, we have that

$$
E_{2}\left(z^{\prime}\right)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{N n}
$$

in a neighbourhood of ∞. Hence, $E_{2}^{(N)}(\infty)=E_{2}(\infty)-N E_{2}(N \cdot \infty)=1-N$.
2. Let Γ be a finite-index even subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ and c a cusp of Γ. Assume that k is an even integer ≥ 4. Show that we have

$$
G_{k, \Gamma, c}(z)=\sum_{(m, n) \in S(c)} \frac{1}{(m z-n)^{k}}
$$

where $S(c)$ is the set of pairs $(m, n) \in \mathbb{Z}^{2}$ such that $\operatorname{HCF}(m, n)=1$ and the element $\frac{n}{m} \in \mathbb{P}^{1}(\mathbb{Q})$ lies in the Γ-orbit c. Describe the sets $S(c)$ for each of the three cusps $\left\{\infty, 0, \frac{1}{2}\right\}$ of $\Gamma_{1}(4)$.

Solution: Let $\gamma_{c} \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\gamma_{c} \cdot \infty=c$. We compute that

$$
\begin{aligned}
G_{k, \Gamma, c}(z)=\left.G_{k, \gamma_{c}^{-1} \Gamma \gamma_{c}, \infty}\right|_{k} \gamma_{c}^{-1}(z) & =\sum_{\gamma \in\left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)_{\infty}^{+} \backslash\left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)} j\left(\gamma, \gamma_{c}^{-1} z\right)^{-k} j\left(\gamma_{c}^{-1}, z\right)^{-k} \\
& =\sum_{\gamma \in\left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)_{\infty}^{+} \backslash\left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)} j\left(\gamma \gamma_{c}^{-1}, z\right)^{-k} \\
& =\sum_{\gamma \in\left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)_{\infty}^{+} \backslash\left(\gamma_{c}^{-1} \Gamma\right)} j(\gamma, z)^{-k} .
\end{aligned}
$$

We define a map

$$
\begin{array}{ccc}
\gamma_{c}^{-1} \Gamma & \longrightarrow & S:=\left\{(m, n) \in \mathbb{Z}^{2} \mid \operatorname{gcd}(m, n)=1 \text { and } \frac{-n}{m} \in \Gamma \cdot c\right\} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \mapsto & (c, d)
\end{array}
$$

We have to show that this map is well-defined, i.e. that the bottom row of a matrix in $\gamma_{c}^{-1} \Gamma$ maps to S, that it is surjective, and that it factors through $\left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)_{\infty}^{+}$.

- Since $\gamma_{c}^{-1} \gamma \in \operatorname{SL}_{2}(\mathbb{Z})$ for any $\gamma \in \Gamma$, we must have $\operatorname{gcd}(c, d)=1$. Now, letting $c=[p / q]$ for $p, q \in \mathbb{Z}$ such that $\operatorname{gcd}(p, q)=1$, we take $\gamma_{c}=\left(\begin{array}{cc}p & -s \\ q & r\end{array}\right)$ for $r, s \in \mathbb{Z}$ such that $p r+q s=1$. Then, if we denote the entries of $\gamma \in \Gamma$ as a, b, c, d, we have

$$
\gamma_{c}^{-1} \gamma=\left(\begin{array}{cc}
r a+s c & r b+s d \\
-q a+p c & -q b+p d
\end{array}\right)
$$

We note that

$$
-\frac{-q b+p d}{-q a+p c}=\left(\begin{array}{cc}
-d & b \\
c & -a
\end{array}\right) \frac{p}{q}=\left(-\operatorname{Id} \gamma^{-1}\right) \frac{p}{q}
$$

which belongs to the Γ-orbit of c since we assumed that Γ is even.

- Let $(m, n) \in S$. We want to show that there exists a matrix with bottom row (m, n) in $\gamma_{c}^{-1} \Gamma$. By definition of S, there exists $\Gamma \in \Gamma$ such that $-\frac{n}{m}=\gamma \frac{p}{q}$. We claim that $(\pm \mathrm{Id}) \gamma_{c}^{-1}\left(-\operatorname{Id} \gamma^{-1}\right)$ has bottom row (m, n). We compute that

$$
\gamma_{c}^{-1}\left(-\operatorname{Id} \gamma^{-1}\right)=\left(\begin{array}{cc}
-d r+s c & r b-s a \\
q d++p c & -q b-p a
\end{array}\right) .
$$

Therefore, $-n / m=\frac{a p+b q}{c p+d q}$. But $\operatorname{gcd}(m, n)=1$ and since $(a p+b q, c p+d q)$ is the first column of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}p & -s \\ q & r\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, the fraction on the RHS above is also reduced. We conclude that

$$
-n= \pm(a p+b q) \quad m= \pm(c p+d q)
$$

and that the signs must coincide in both equations, which shows the claim.

- Finally, assume that $g, g^{\prime} \in \gamma_{c}^{-1} \Gamma$ have the same bottom row. Then clearly $g^{\prime} g^{-1} \in \gamma_{c}^{-1} \Gamma \gamma_{c}$ and by Proposition 2.7.1 $g^{\prime} g^{-1} \in \mathrm{SL}_{2}(\mathbb{Z})_{\infty}^{+}$. Hence $g^{\prime} g^{-1} \in\left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)_{\infty}^{+}$. Conversely, if $g=g^{\prime} \bmod \left(\gamma_{c}^{-1} \Gamma \gamma_{c}\right)_{\infty}^{+}$, then g and g^{\prime} have the same bottom row.

We describe the set $S(\infty)$. Assume that $\frac{p}{q} \in \Gamma_{1}(4) \cdot \infty$. Then

$$
\frac{p}{q}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \infty=\frac{a}{c}
$$

for some $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{1}(4)$. We claim that for any pair (a, c) such that $\operatorname{gcd}(a, c)=1, a \equiv 1 \bmod 4$, $c \equiv 0 \bmod 4$, there exists a pair $r, z \in \mathbb{Z}$ such that $\left(\begin{array}{cc}a & -s \\ c & r\end{array}\right) \in \Gamma_{1}(4)$. Indeed, there exists a pair of integers r, s such that $a r+c s=1$. Moreover,

$$
1=\operatorname{det}\left(\begin{array}{cc}
a & -s \\
c & r
\end{array}\right) \equiv r \bmod 4,
$$

which shows the claim. We conclude that

$$
S(\infty)=\{(a, c) \mid \operatorname{gcd}(a, c)=1, a \equiv 1 \bmod 4, c \equiv 0 \bmod 4\} .
$$

3. Let $\Gamma=\operatorname{SL}_{2}(\mathbb{Z})$, and let $g=\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$.. Decompose $\Gamma g \Gamma$ into left Γ-cosets, i.e. find $\left\{\alpha_{i} \in \operatorname{GL}_{2}(\mathbb{Q})^{+}\right\}$ such that

$$
\Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma=\bigcup_{i} \Gamma \alpha_{i} .
$$

Hence show that if f is a modular form of weight k and level Γ, we have

$$
\left.f\right|_{k}[\Gamma g \Gamma]=\frac{1}{p} \sum_{j=0}^{p-1} f\left(\frac{z+j}{p}\right)+p^{k-1} f(p z)
$$

Solution: Recall Proposition 3.1.4., that showed that $\left(g^{-1} \Gamma g \cap \Gamma\right) \backslash \Gamma$ is in bijection with $\Gamma \backslash \Gamma g \Gamma$. We will also use Corollary 3.1.6. that, given a coset decomposition of $\left(g^{-1} \Gamma g \cap \Gamma\right) \backslash \Gamma$

$$
\Gamma=\bigcup_{j}\left(g^{-1} \Gamma g \cap \Gamma\right) \alpha_{j},
$$

yields a coset decomposition of $\Gamma \backslash \Gamma g \Gamma$ as

$$
\Gamma g \Gamma=\bigcup_{j} \Gamma g \alpha_{j} .
$$

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. We compute that

$$
\begin{aligned}
& \frac{1}{p}\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)=\left(\begin{array}{cc}
a & p b \\
c / p & d
\end{array}\right) \\
\Longrightarrow & g^{-1} \Gamma g \cap \Gamma=\left\{\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})|p| b^{\prime}\right\}=\Gamma^{0}(p) .
\end{aligned}
$$

We want to find coset representatives α_{j} of $\Gamma^{0}(p) \backslash \Gamma$. Since the additional condition on $\Gamma^{0}(p)$ is that p divides the upper right entry, we let $\alpha_{j}=\left(\begin{array}{ll}1 & j \\ 0 & 1\end{array}\right)$ for $0 \leq j<p$ and check whether or not they are coset representatives. Let $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$, then there is some j such that $\gamma \in \Gamma^{0}(p) \alpha_{j} \Leftrightarrow \gamma \alpha_{j}^{-1} \in \Gamma^{0}(p) \Leftrightarrow p$ divides $b-j a$. We divide this in two cases

- Assume $p \nmid a$, then there exists $r \in \mathbb{Z}$ such that $a r \equiv 1 \bmod p \Longrightarrow B-b r a \equiv 0 \bmod p$. Let j be the representative of $b r$ in $\{0, \ldots, p-1\}$.
- Assume now that $p \mid a$. Then $p \nmid b$ as $\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \Longrightarrow p \nmid b-j a$. So, none of our α_{j} can be a coset representative of such a γ. However,

$$
\gamma\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
b & -a \\
d & -c
\end{array}\right) \in \Gamma^{0}(p)
$$

Hence we can choose our last representative to be $\tilde{\alpha}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
So, we can now find a decomposition of $\Gamma \backslash \Gamma g \Gamma$ by multiplying each of the α_{j} and $\tilde{\alpha}$ by g. This yields

$$
\Gamma g \Gamma=\bigcup_{j} \Gamma\left(\begin{array}{ll}
1 & j \\
0 & 1
\end{array}\right) \cup \Gamma\left(\begin{array}{cc}
0 & 1 \\
-p & 0
\end{array}\right)
$$

The explicit formula for the weight k action of $\Gamma g \Gamma$ on modular forms of weight k and level Γ follows directly.

