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1. Let E3(z) be as defined in Definition 1.7.1.
(a) Show that for all (2%) € SLy(Z), we have
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Solution: We let the reader check that the formula holds for 7= (§ 1) and for § = ({ ')
(see Serre’s “A course in Arithmetic” for the second formula). We will show that if the
formula holds for some given y; = (¢4) and v, = (‘Z: gl,) € SL2(Z), then it holds for the
product. We recall that j(y1v2,2) = j(71,722)j(72, z). Hence,
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We let C, D denote the bottom row of ;2. We have reduced the proof to showing that
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We let the reader check that this is indeed the case.

(b) For N > 2, define
ESN)(2) = Ey(2) — NEy(N2).

Show that the function EéN)(z) is a modular form of weight 2 and level I'y(NV), and determine
its values at the cusps [0] and co.

Solution: Let v = (2Y) € I'o(N). Then,

BV (Ri02)002) 7 = Ba02)i009) 7 = NEa (g ) 00

Since v = (C/aN bév) € SLy(Z) with j(v',Nz) = j(v, z), we can apply the transformation
formula to the right-hand side above and obtain
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We evaluate EéN) at the cusp oo, i.e. we have to compute the first term of the g-expansion
of E3(z) — NE2(Nz) when z is in a small enough neighbourhood of infinity. We have
computed in Lemma 1.7.2 that

Ey(z)=1—-24 Z o1(n)g"

n=1

in a neighbourhood of co. Now, letting 2’ = Nz and reasoning similarly as for Es(z), we
have that

Ey(Z)=1-24 Z o1(n)gN™
n=1

in a neighbourhood of co. Hence, EéN)(oo) = F3(00) = NE3(N - 0) =1— N.

2. Let T be a finite-index even subgroup of SLy(Z) and ¢ a cusp of I'. Assume that & is an even integer

> 4. Show that we have .
Grre(2) = ) (mz —n)F
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where S(c) is the set of pairs (m,n) € Z* such that HCF(m,n) = 1 and the element 2 € P'(Q) lies
in the I'-orbit c. Describe the sets S(c) for each of the three cusps {o0,0, 3} of I';(4).

Solution: Let . € SLa(Z) such that 4. - co = ¢. We compute that
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We define a map

' — S:={(m,n) € Z*|ged(m,n) =1 and =2 €T - c}
(e) = (e, d)

We have to show that this map is well-defined, i.e. that the bottom row of a matrix in 4, 'T
maps to S, that it is surjective, and that it factors through (v, 'Ty.)L.

e Since v, 'y € SLy(Z) for any v € T, we must have ged(c, d) = 1. Now, letting ¢ = [p/q] for
p,q € Z such that ged(p,q) = 1, we take 7. = (f; _TS) for r, s € Z such that pr + ¢s = 1.
Then, if we denote the entries of v € I" as a, b, ¢, d, we have

1. _(ra+sc rb+sd
Yo VT \—qa+pc —gb+pd)

We note that
—qb+pd_(—d b>p P

= S=(-Idy HE
—qa + pc ¢ —ajgq (=1dy )q’

which belongs to the I'-orbit of ¢ since we assumed that I is even.
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o Let (m,n) € S. We want to show that there exists a matrix with bottom row (m,n)
in 47 !T. By definition of S, there exists I' € ' such that - = 7%. We claim that

(£1d)y; (= Id~v~!) has bottom row (m,n). We compute that

( Id’yfl) (dr+sc rb—sa>'

qd + +pc  —qb— pa

Therefore, —n/m = ggisg. But ged(m,n) = 1 and since (ap + bq,cp + dg) is the first

column of (¢4) (% 7°) € SLa(Z), the fraction on the RHS above is also reduced. We
conclude that

—n = +(ap+bg) m = +(cp+dq)

and that the signs must coincide in both equations, which shows the claim.

e Finally, assume that g, ¢’ € v, 'T have the same bottom row. Then clearly g'g~! € 7. 1Ty,
and by Proposition 2.7.1 ¢’¢g7! € SLQ( )&. Hence ¢’g7! € (v, 'I'v.)L,. Conversely, if
g =g mod(y,'Tv.)L, then g and ¢’ have the same bottom row.

We describe the set 5(cc). Assume that 2 € I';(4) - 0o. Then

p_(a b) _¢
q B C d = C
for some (%) € I'y1(4). We claim that for any pair (a,c) such that ged(a,¢) =1, a = 1 mod 4,

¢ = 0 mod 4, there exists a pair r, z € Z such that (¢ %) € I';(4). Indeed, there exists a pair of
integers r, s such that ar + ¢s = 1. Moreover,

1=det(%75)=r mod4,
which shows the claim. We conclude that

S(00) ={(a,c) | ged(a,c) =1, a =1 mod4, ¢ =0 mod 4}.

3. Let I' = SLy(Z), and let g = ({§5).. Decompose I'gl" into left I-cosets, i.e. find {o; € GL2(Q)"}

such that
P(op)T U Ta;.

Hence show that if f is a modular form of weight k& and level I'; we have

lp_l Z+] k—1
flk[Tgl] = pi +0" f(p2)
7=0

Solution: Recall Proposition 3.1.4., that showed that (¢~ !TgNT)\I is in bijection with T'\I'g.
We will also use Corollary 3.1.6. that, given a coset decomposition of (g~!T'g N T)\I'

I = U 1Fgﬂl" )oy,

yields a coset decomposition of I'\I'gI" as

T'gl' = U Lga;.
J
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Let v = (‘; 2) € SLy(Z). We compute that

6696 D

_ v
—grgnr={(4 ) esta@ o} - o).

We want to find coset representatives o of I'°(p)\I'. Since the additional condition on I'’(p)
is that p divides the upper right entry, we let o; = ((1) {) for 0 < j < p and check whether
or not they are coset representatives. Let 7 = (? Z) € T, then there is some j such that
v eI(p)a; & 704]-71 € I'%(p) & p divides b — ja. We divide this in two cases

e Assume p { a, then there exists » € Z such that ar = 1 modp = B — bra = 0 mod p.
Let j be the representative of br in {0,...,p — 1}.

o Assume now that p | a. Then p{b as vy € SLo(Z) = p1tb— ja. So, none of our a; can
be a coset representative of such a v. However,

0 -1\ (b —-a 0
(D) erw
Hence we can choose our last representative to be & = (91 (1)) .

So, we can now find a decomposition of I'\I'gI" by multiplying each of the «; and & by g. This

yields
_ 1 j 0 1
FgFUI‘<O 1>ur<_p 0).
J

The explicit formula for the weight k£ action of I'gI" on modular forms of weight k& and level T"
follows directly.
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