STUDENT SEMINAR:
AN INTRODUCTION TO MEAN-FIELD LIMITS FOR VLASOV EQUATIONS

ABSTRACT. In today’sEl talk we focus on the transport equation in conservative form, namely
O + divg (uV) = 0.

We discuss the existence and uniqueness of weak solutions as well as Cl-solutions under more restrictive
conditions. The talk follows section 2.3 of [Gol13].

TALK 4: CONSERVATIVE TRANSPORT AND WEAK SOLUTIONS

Adrian Dawid

A. Basic Definitions

Definition 4.1. Let (X,Qx), (Y,Qy) be measurable spaces, f : X — Y a measurable function and
w: Qx = R>o a measure on (X, Qx). Then the measure fu : Qy — R>¢ defined by

Fin(U) = p(f~H(U)VU € Qy
is called the push-forward measure of u by f.

Example 4.2. Consider X = {0, 1} with the counting measure p and let Y = R with the usual Lebesgue
measure and consider the measurable function 7 : X < R. Then

ip(X) = [X N{0,1}] = ifp=do + 01.

Example 4.3. Consider the Lebesgue-measurable function f : R — R given by x — z + « for @ € R
and the Lebesgue measure A on R. Then

JEA=A

since the Lebesgue measure is translation invariant.

Example 4.4. A more interesting example is given by the following: Let X = [0,1] x [0, 27] with p
being the uniform probability measure on X. Let Y = D? C R? be the closed unit disk, then consider
the measurable function

f:X — D?
t,0 — r - (cos,sind).
We know that
fiu(raD*\ 11 D?) =1y — 1y
for any 0 < r; < rp < 1. Indeed we have for any measurable U C D?, that

fou) = | /U o drdf,

i.e. ffp admits a density w.r.t. the Lebesgue measure on D2,

Proposition 4.5. Let (X,Qx), (Y,Qy) be measurable spaces, T : X — Y a measurable function and
e Qx — Rso a measure on (X,Qx). Let v :="T4u, then

peL'(Y,v) = poT e L'(X,p)

/@du:/ poTdu.
Y b'e

with
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270°

FIGURE 1. The density of ffu from example on an annulus going from a small radius
to radius 1.

Proof. For any measurable set U € 2y we have that
Ly oT =1r-1(vy,

which by construction of v implies

/YILUdV =v(U) =T HU)) = /X Lp—1ndp = /X(IlU oT)dp.

Thus the proposition is true for indicator functions, then by the standard machinery of measure-theoretic
inductionﬂ this gives us the proposition for L'(Y,v). O

We can further see a formula for the concrete example of a diffeomorphism and the Lebesgue measure:

Corollary 4.6. Let f € LY(R™) with f > 0 almost-everywhere on R™ and let T : R® — R" be a
(CL-)diffeomorphism. Then

TH(A) = fo T~ -|det(DT o T7)| " -\,
where A again is the Lebesgue measure on R™.
Proof. Let U C R™ be a Lebesgue-measurable subset, then

THNO) = F- M) = | f - Lr-aw)dA

Since T is a diffeomorphism we can apply the change of VariablesE] formula to this integral to obtain the
following:

[ @) T @@aN@) = [ ST @) Lo (T (@) - |det DT (@)
= [ f(T ') 1u(@)- |detD, T dA(z)
R™ N———
=|det D1, T| 7"

-1

— [ @ et Drs T ) - ()ir)

1

=(foT ' |det(DToT~Y)| - N(U),

thus completing the proof. O

Definition 4.7. Let wM(R™) denote the set of Radon measures on R™ topologized with the weak
topology.

Le. passing to linear combinations of finitely many indicator functions and then by density onto all integrable functions.

2here we exchange z with T~ (z)
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B. Weak Solutions

We will now give the definition of a weak solution to the conservative transport equation.

Definition 4.8. Let V : [0,T] x R" — R"™ and let pp € M(R™). A weak solution to the conservative
transport equation

Orp + div, (V) =0
pli=0 = o,
is € C([0,T], wM(R™)) s.t. pli=o = po and for any ¢ € C1((0,T) x R™) we have

T
| [ @tta)+ vita) - Voptta)dute. )@yt o

A natural question to ask is, why this is a sensible definition. The answer is given by the following
proposition:

Proposition 4.9. Let f € C1([0,T] x R"), then
Of +dive(fV) =0 <— / / (Orp(t, ) + V(t,x) - Vap(t, ) f(t, z)dzdt = 0¥p € CL((0,T) x R™).

We can easily see that this equation is equivalent to the weak formulation for u(t,-) = f(t,-) - A with A
being the Lebesgue measure. So now let us prove the proposition.

Proof. We start by defining the following vector field:
W:[0,T] x R* - Rx R"

t.2) {(so(t, ©)- (). p(t,a) - f(t,2) V(tw) ifte(0T)
’ 0 if t € {0,1}.

By construction this vector field is in C1((0,T) x R™,R x R™). Thus it vanishes on the boundary which
by Green’s formula gives us

0 :/ divy (W (t, z))dxdt
(0,T) xR™

:/ div . (f(t,z) - p(t,x), f(t,z) - p(t,x) - V(¢ x))dzdt.
(0,T)xR™
Now we take a more exact look at the expression inside the integral and obtain:

dive z,(f(t, @) - @(t, ), f(E,2) - p(t, ) - V (¢, x))

= 0u(f(t, m)(t, @) + diva (f(t, ) (t, 2)V (¢, 2))

= ([t x)p(t, @) + (t, ) dive (f(t, 2V (L, 2)) + (Vaip, f(E,2)V (L, 2))

= 0(f(t, 2)p(t, o)) + @(t, ) dive (f (¢, 2V (t, 7)) + f(t, 2)(Vap, V(E, 2))

= @t x) (O f(t, o) + dive (f (8, 2)V(E, 2))) + [ (8 2(Dp(t, x) + f(t,2)(Vaip, V(E, @)

Combining this with the fact that the integral vanishes we obtain the following result:

/ £t 2) (Ot ) + (V(E 7), Vap(t, 7)) dadt
(0,T)xR™
—— [ ela)@uf(t) + diva(f(t) - V(. )dads
(0,T)xR"
So, if Oy f + div,(fV) = 0, then we have
| @) @utta) + (Vita) Vot o)dodt =0,
(0,T)xR"
as claimed. Conversely, if for any ¢ € C1((0,T) x R™) we have

T
/0 (Quplt,2) + V(t,2) - Vaiplt, 7)) f (1, w)dodt = 0,

then 9y f + div,(fV) must vanish almost-everywhere and thus by its continuity must vanish. This con-
cludes the proof. |
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C. Solutions

We will now see that weak solutions to the conservative transport equation exist under rather general
circumstances and are given by a formula that is very similar to (and also compatible with) the case
treated in last week’s talk.

Theorem 4.10. Let V € C1([0,T] x R™) be a vector field that satisfies (H1) and (H2) and let X be its
characteristic flow. Further let puo € M™T(R™). Then the Cauchy-problem

{&eu + div, (V) =0
tlee = o
has a unique weak solution p given by
pu(t) = X(t,0,-)8uo
for any t € [0,T].
Proof. o We first show the existence of a weak solution. This is done by checking that the formula

given in the theorem is indeed a solution. For this let ¢ € C1((0,7) x R™) be arbitrary. Then
we define the function

t . o(t, X(t,0,y))duo(y).

We know from the results on the flow that this is of class C'. Now we observe that

d
7 | et X(2,0,9))duo(y)
RTL
d
= | et X(2,0,9))dpo(y)
]Rn
= [ Owp(t, X(t,0,9)) + (Vaip(t, X(t,0,9)), 9 X(¢,0,y) )duo(y)
N =V (t,X(t,0,y))
= | Owp(t,x) + (Vaip(t,2), V(L z))du(z),
]R"n,
where we use the integral formula for the push-forward measure in the last line. Next we observe
that
/ o(T, X(T,0,y))dpo(y) = 0
and

[ #0.X0.0.0)duo(w) =0

because ¢ has compact support in (0,7) x R™. Thus

T
oz/0 %/nw(t,X(t,O,y))duo(y)
T

- /0 Rn 8t¢(t’ I) + <vfw(tv I)? V(t7 l’)>du(z)dt,

from which we conclude that p is a weak solution to the conservative transport equation with
the relevant initial data.

o What is left to show is the uniqueness of the solution. So let p be any solution to the conservative
transport equation with the relevant initial data. Further let ¢ € CL(R™) be arbitrary. Then set

v(t) = X(t,0,)p.
Now let £ € C2°((0,T)) be arbitrary. We define the C!-function ¥ : [0,7] x R™ as
ty = E()Y(X(0,2,y)).
We note that in the previous talk it was shown that there is a k > 0 such that
X (s, t.9)| < (|lyl + KT)e"

for all y € R™ and s,t € [0.7]. Thus the fact that the support of ¢ is compact implies as well
that ¥(¢,-) has compact support for any ¢t € [0,T]. If we combine this with the fact that & has
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compact support in (0,7), we obtain that ¥ has compact support in (0,7") x R™. Then we note
that

at\ll(ta y) + <V(t7 y)a Vylll(tv y)>
=£()(0:X(0,¢,), Vo) + &' (0 (y) + (V(t,y), Vy ¥ (t,y))
==V(ty)
=" (t)P(X(0,t,y)).
We further note that

T T
o ([ v@awm)a=- [ [ ¢ouxomoear
T

T / | T (6y) + (V(9), V(5 y)du() (w)de
=0,

where we use that p is a weak solution to the transport equation in the last step. This implies
that the weak derivative of the map

0,T] >t~ P(z)dv(t)(z) € R
R’n

is 0, which in turn implies that this function is constant. Thus
Y(x)dv(t)(z) = | ¥(x)dv(0)(x)
RTL RTI,

= [ Y@)du(t)(x) = | d(@)duo(z)
RTL Rn
which implies (since ¢ € C}(R™) was arbitrary) that

V(t) = X(Ov L, )ﬁﬂ(t) = po = ,u(t) = X(t7 0, ')ﬁ/-LO

and thus concludes the proof.

We will now consider a simple example:

Example 4.11. Let n = 2, pg = d(y,0) for some £ € R and V (¢, (21,22)) = (—x2,21). Then we can see
directly, that when we identify R? = C we get

X(t,s,y) =Ny
And thus we obtain
u(t) = X (£,0, )0 = (y — e "9)860.0)
= 5(/ cost,fsint)-

Here it is useful to keep in mind why we even want to look at measure valued solutions: At some point
we want to look at (physical) systems made up of many particles. The measure can then be interpreted
as the probability distribution of a random choice of particle from this system. Our example would be
the (boring) case of a system with just one particle.

To conclude the talk we will see that if V' additionally satisfies (H3) we get a C' solution for a C*!
initial value.

Theorem 4.12. Let V € CY([0,T] x R™) be a vector field that satisfies (H1)-(H3) and let X be its
characteristic flow. Further let fo € C1(R™). Then the Cauchy-problem

Of +diva(fV) =0
flto = fo

has a unique weak solution p given by

ft,x) = fo(X(0,t,x))det(D,X(0,t,x)).
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(A) The vector field V.

(B) V together with two solutions for £ =1 and £ = 3.
FIGURE 2. A figure visualizing example
Proof.

e We first show that the solution to this equation is unique. For this it suffices to show that
any solution with initial data fo = 0 vanishes. So assume g € C1([0,T] x R™) is such that

Org + div,(gV) =0
g|t0 =0.
Then we further have

0= 0ig + divy(gV) = Org + g dive V + g(V, V.g)
= 0,9+ 9g(V,V,g) = —gdiv, V.

Together with the properties of the characteristic flow we conclude that the function

0,T] >t g(t, X(t,0,y))
is C'! and satisfies for any y € R™ the ordinary differential equation

4g(t, X(t,0,y)) = —g(t, X (£,0,y))(div, V)(t,0,9))
gli=o =0

which means that it must vanish, which by X(¢,0,-) being a diffecomorphism implies that ¢
vanishes. Thus we have uniqueness.
e We also want to show that f € C*([0,T] x R") and that our formula is correct. For this we

decompose fy using the Japanese-Bracket]’, We write

fo= (fo) = (=fo+ (fo)).
~———

~—~
=/ =f5?
Now let
FO ¢, 2) = £9(X(0,t, ) det (D, X (0, ¢, 2))
FOt,2) = £2(X(0,t, 2)) det (D, X (0, ¢, 2)).
Then note

() = X (1,0, )4(f§2) = O
2
(1) = X(8,0.)8(f57 ) = fPA,
are solutions to the conservative transport equation with the respective initial data. Note that the

problem has now the right form since both fél) and féz) are non-negative and thus fél))\, fé2))\ €

M (R™). Here we use our earlier result on the push-forward of the Lebesgue measure A under
a diffeomorphism. Now note that by linearity p() — u(?) is a weak solution of the conservative

transport equation with initial data po = foA. Thus f = f() — @) since f\ is then the unique

(weak) solution to the conservative transport equation. However our formula gives us that f is
C1 and thus due to the result of the last talk it is a classical solution as well.

O

3z)y = /1 + |=)?.
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