STUDENT SEMINAR:
 AN INTRODUCTION TO MEAN-FIELD LIMITS FOR VLASOV EQUATIONS

Abstract. In today' ${ }^{1}$ talk we focus on the transport equation in conservative form, namely

$$
\partial_{t} \mu+\operatorname{div}_{x}(\mu V)=0
$$

We discuss the existence and uniqueness of weak solutions as well as C^{1}-solutions under more restrictive conditions. The talk follows section 2.3 of Gol13.

Talk 4: Conservative Transport and Weak Solutions
 Adrian Dawid

A. Basic Definitions

Definition 4.1. Let $\left(X, \Omega_{X}\right),\left(Y, \Omega_{Y}\right)$ be measurable spaces, $f: X \rightarrow Y$ a measurable function and $\mu: \Omega_{X} \rightarrow \mathbb{R}_{\geq 0}$ a measure on $\left(X, \Omega_{X}\right)$. Then the measure $f \sharp \mu: \Omega_{Y} \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
f \sharp \mu(U):=\mu\left(f^{-1}(U)\right) \forall U \in \Omega_{Y}
$$

is called the push-forward measure of μ by f.
Example 4.2. Consider $X=\{0,1\}$ with the counting measure μ and let $Y=\mathbb{R}$ with the usual Lebesgue measure and consider the measurable function $i: X \hookrightarrow \mathbb{R}$. Then

$$
i \sharp \mu(X)=|X \cap\{0,1\}| \Longrightarrow i \sharp \mu=\delta_{0}+\delta_{1} .
$$

Example 4.3. Consider the Lebesgue-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $x \mapsto x+\alpha$ for $\alpha \in \mathbb{R}$ and the Lebesgue measure λ on \mathbb{R}. Then

$$
f \sharp \lambda=\lambda
$$

since the Lebesgue measure is translation invariant.
Example 4.4. A more interesting example is given by the following: Let $X=[0,1] \times[0,2 \pi]$ with μ being the uniform probability measure on X. Let $Y=D^{2} \subset \mathbb{R}^{2}$ be the closed unit disk, then consider the measurable function

$$
\begin{aligned}
f: X & \rightarrow D^{2} \\
t, \theta & \mapsto r \cdot(\cos \theta, \sin \theta)
\end{aligned}
$$

We know that

$$
f \sharp \mu\left(r_{2} D^{2} \backslash r_{1} D^{2}\right)=r_{2}-r_{1}
$$

for any $0 \leq r_{1} \leq r_{2} \leq 1$. Indeed we have for any measurable $U \subset D^{2}$, that

$$
f \sharp \mu(U)=\iint_{U} \frac{1}{2 \pi r} d r d \theta,
$$

i.e. $f \sharp \mu$ admits a density w.r.t. the Lebesgue measure on D^{2}.

Proposition 4.5. Let $\left(X, \Omega_{X}\right),\left(Y, \Omega_{Y}\right)$ be measurable spaces, $T: X \rightarrow Y$ a measurable function and $\mu: \Omega_{X} \rightarrow \mathbb{R}_{\geq 0}$ a measure on $\left(X, \Omega_{X}\right)$. Let $\nu:=T \sharp \mu$, then

$$
\varphi \in L^{1}(Y, \nu) \Longrightarrow \varphi \circ T \in L^{1}(X, \mu)
$$

with

$$
\int_{Y} \varphi d \nu=\int_{X} \varphi \circ T d \mu
$$

Figure 1. The density of $f \sharp \mu$ from example 4.4 on an annulus going from a small radius to radius 1.

Proof. For any measurable set $U \in \Omega_{Y}$ we have that

$$
\mathbb{1}_{U} \circ T=\mathbb{1}_{T^{-1}(U)}
$$

which by construction of ν implies

$$
\int_{Y} \mathbb{1}_{U} d \nu=\nu(U)=\mu\left(T^{-1}(U)\right)=\int_{X} \mathbb{1}_{T^{-1}(U)} d \mu=\int_{X}\left(\mathbb{1}_{U} \circ T\right) d \mu .
$$

Thus the proposition is true for indicator functions, then by the standard machinery of measure-theoretic induction ${ }^{1}$ this gives us the proposition for $L^{1}(Y, \nu)$.

We can further see a formula for the concrete example of a diffeomorphism and the Lebesgue measure:
Corollary 4.6. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ with $f \geq 0$ almost-everywhere on \mathbb{R}^{n} and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a (C^{1}-)diffeomorphism. Then

$$
T \sharp(f \lambda)=f \circ T^{-1} \cdot\left|\operatorname{det}\left(D T \circ T^{-1}\right)\right|^{-1} \cdot \lambda,
$$

where λ again is the Lebesgue measure on \mathbb{R}^{n}.
Proof. Let $U \subset \mathbb{R}^{n}$ be a Lebesgue-measurable subset, then

$$
T \sharp(f \lambda)(U)=f \cdot \lambda\left(T^{-1}(U)\right)=\int_{\mathbb{R}^{n}} f \cdot \mathbb{1}_{T^{-1}(U)} d \lambda .
$$

Since T is a diffeomorphism we can apply the change of variables s^{2} formula to this integral to obtain the following:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f(x) \cdot \mathbb{1}_{T^{-1}(U)}(x) d \lambda(x) & =\int_{\mathbb{R}^{n}} f\left(T^{-1}(x)\right) \cdot \mathbb{1}_{T^{-1}(U)}\left(T^{-1}(x)\right) \cdot\left|\operatorname{det} D_{x} T^{-1}\right| d \lambda(x) \\
& =\int_{\mathbb{R}^{n}} f\left(T^{-1}(x)\right) \cdot \mathbb{1}_{U}(x) \cdot \underbrace{\left|\operatorname{det} D_{x} T^{-1}\right|}_{=\left|\operatorname{det} D_{T^{-1}(x)} T\right|^{-1}} d \lambda(x) \\
& =\int_{\mathbb{R}^{n}}\left(f\left(T^{-1}(x)\right)\left|\operatorname{det} D_{T^{-1}(x)} T\right|^{-1}\right) \cdot \mathbb{1}_{U}(x) d \lambda(x) \\
& =\left(f \circ T^{-1} \cdot\left|\operatorname{det}\left(D T \circ T^{-1}\right)\right|^{-1} \cdot \lambda\right)(U),
\end{aligned}
$$

thus completing the proof.
Definition 4.7. Let $w \mathcal{M}\left(\mathbb{R}^{n}\right)$ denote the set of Radon measures on \mathbb{R}^{n} topologized with the weak topology.

[^0]
B. Weak Solutions

We will now give the definition of a weak solution to the conservative transport equation.
Definition 4.8. Let $V:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and let $\mu_{0} \in \mathcal{M}\left(\mathbb{R}^{n}\right)$. A weak solution to the conservative transport equation

$$
\left\{\begin{array}{l}
\partial_{t} \mu+\operatorname{div}_{x}(\mu V)=0 \\
\left.\mu\right|_{t=0}=\mu_{0}
\end{array}\right.
$$

is $\mu \in C\left([0, T], w \mathcal{M}\left(\mathbb{R}^{n}\right)\right)$ s.t. $\left.\mu\right|_{t=0}=\mu_{0}$ and for any $\varphi \in C_{c}^{1}\left((0, T) \times \mathbb{R}^{n}\right)$ we have

$$
\int_{0}^{T} \int_{\mathbb{R}^{n}}\left(\partial_{t} \varphi(t, x)+V(t, x) \cdot \nabla_{x} \varphi(t, x)\right) d \mu(t, \cdot)(x) d t=0 .
$$

A natural question to ask is, why this is a sensible definition. The answer is given by the following proposition:

Proposition 4.9. Let $f \in C^{1}\left([0, T] \times \mathbb{R}^{n}\right)$, then

$$
\partial_{t} f+\operatorname{div}_{x}(f V) \equiv 0 \Longleftrightarrow \int_{0}^{T} \int_{\mathbb{R}^{n}}\left(\partial_{t} \varphi(t, x)+V(t, x) \cdot \nabla_{x} \varphi(t, x)\right) f(t, x) d x d t=0 \forall \varphi \in C_{c}^{1}\left((0, T) \times \mathbb{R}^{n}\right)
$$

We can easily see that this equation is equivalent to the weak formulation for $\mu(t, \cdot)=f(t, \cdot) \cdot \lambda$ with λ being the Lebesgue measure. So now let us prove the proposition.

Proof. We start by defining the following vector field:

$$
\begin{aligned}
W:[0, T] \times \mathbb{R}^{n} & \rightarrow \mathbb{R} \times \mathbb{R}^{n} \\
(t, x) & \mapsto \begin{cases}(\varphi(t, x) \cdot f(t, x), \varphi(t, x) \cdot f(t, x) \cdot V(t, x)) & \text { if } t \in(0, T) \\
0 & \text { if } t \in\{0,1\} .\end{cases}
\end{aligned}
$$

By construction this vector field is in $C_{c}^{1}\left((0, T) \times \mathbb{R}^{n}, \mathbb{R} \times \mathbb{R}^{n}\right)$. Thus it vanishes on the boundary which by Green's formula gives us

$$
\begin{aligned}
0 & =\int_{(0, T) \times \mathbb{R}^{n}} \operatorname{div}_{t, x}(W(t, x)) d x d t \\
& =\int_{(0, T) \times \mathbb{R}^{n}} \operatorname{div}_{t, x}(f(t, x) \cdot \varphi(t, x), f(t, x) \cdot \varphi(t, x) \cdot V(t, x)) d x d t .
\end{aligned}
$$

Now we take a more exact look at the expression inside the integral and obtain:

$$
\begin{aligned}
& \operatorname{div}_{t} x,(f(t, x) \cdot \varphi(t, x), f(t, x) \cdot \varphi(t, x) \cdot V(t, x)) \\
& =\partial_{t}(f(t, x) \varphi(t, x))+\operatorname{div}_{x}(f(t, x) \varphi(t, x) V(t, x)) \\
& =\partial_{t}(f(t, x) \varphi(t, x))+\varphi(t, x) \operatorname{div}_{x}\left(f(t, x V(t, x))+\left\langle\nabla_{x} \varphi, f(t, x) V(t, x)\right\rangle\right. \\
& =\partial_{t}(f(t, x) \varphi(t, x))+\varphi(t, x) \operatorname{div}_{x}\left(f(t, x V(t, x))+f(t, x)\left\langle\nabla_{x} \varphi, V(t, x)\right\rangle\right. \\
& =\varphi(t, x)\left(\partial_{t} f(t, x)+\operatorname{div}_{x}(f(t, x) V(t, x))\right)+f\left(t, x\left(\partial_{t} \varphi(t, x)+f(t, x)\left\langle\nabla_{x} \varphi, V(t, x)\right\rangle .\right.\right.
\end{aligned}
$$

Combining this with the fact that the integral vanishes we obtain the following result:

$$
\begin{aligned}
& \int_{(0, T) \times \mathbb{R}^{n}} f(t, x)\left(\partial_{t} \varphi(t, x)+\left\langle V(t, x), \nabla_{x} \varphi(t, x\rangle\right)\right) d x d t \\
= & -\int_{(0, T) \times \mathbb{R}^{n}} \varphi(t, x)\left(\partial_{t} f(t, x)+\operatorname{div}_{x}(f(t, x) \cdot V(t, x)) d x d t\right.
\end{aligned}
$$

So, if $\partial_{t} f+\operatorname{div}_{x}(f V)=0$, then we have

$$
\int_{(0, T) \times \mathbb{R}^{n}} f(t, x)\left(\partial_{t} \varphi(t, x)+\left\langle V(t, x), \nabla_{x} \varphi(t, x\rangle\right)\right) d x d t=0,
$$

as claimed. Conversely, if for any $\varphi \in C_{c}^{1}\left((0, T) \times \mathbb{R}^{n}\right)$ we have

$$
\int_{0}^{T} \int_{\mathbb{R}^{n}}\left(\partial_{t} \varphi(t, x)+V(t, x) \cdot \nabla_{x} \varphi(t, x)\right) f(t, x) d x d t=0
$$

then $\partial_{t} f+\operatorname{div}_{x}(f V)$ must vanish almost-everywhere and thus by its continuity must vanish. This concludes the proof.

C. Solutions

We will now see that weak solutions to the conservative transport equation exist under rather general circumstances and are given by a formula that is very similar to (and also compatible with) the case treated in last week's talk.

Theorem 4.10. Let $V \in C^{1}\left([0, T] \times \mathbb{R}^{n}\right)$ be a vector field that satisfies (H1) and (H2) and let X be its characteristic flow. Further let $\mu_{0} \in \mathcal{M}^{+}\left(\mathbb{R}^{n}\right)$. Then the Cauchy-problem

$$
\left\{\begin{array}{l}
\partial_{t} \mu+\operatorname{div}_{x}(\mu V)=0 \\
\left.\mu\right|_{t_{0}}=\mu_{0}
\end{array}\right.
$$

has a unique weak solution μ given by

$$
\mu(t)=X(t, 0, \cdot) \sharp \mu_{0}
$$

for any $t \in[0, T]$.
Proof. - We first show the existence of a weak solution. This is done by checking that the formula given in the theorem is indeed a solution. For this let $\varphi \in C_{c}^{1}\left((0, T) \times \mathbb{R}^{n}\right)$ be arbitrary. Then we define the function

$$
t \mapsto \int_{\mathbb{R}^{n}} \varphi(t, X(t, 0, y)) d \mu_{0}(y)
$$

We know from the results on the flow that this is of class C^{1}. Now we observe that

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{n}} \varphi(t, X(t, 0, y)) d \mu_{0}(y) \\
= & \int_{\mathbb{R}^{n}} \frac{d}{d t} \varphi(t, X(t, 0, y)) d \mu_{0}(y) \\
= & \int_{\mathbb{R}^{n}} \partial_{t} \varphi(t, X(t, 0, y))+\langle\nabla_{x} \varphi(t, X(t, 0, y)), \underbrace{\partial_{t} X(t, 0, y)}_{=V(t, X(t, 0, y))}\rangle d \mu_{0}(y) \\
= & \int_{\mathbb{R}^{n}} \partial_{t} \varphi(t, x)+\left\langle\nabla_{x} \varphi(t, x), V(t, x)\right\rangle d \mu(x),
\end{aligned}
$$

where we use the integral formula for the push-forward measure in the last line. Next we observe that

$$
\int_{\mathbb{R}^{n}} \varphi(T, X(T, 0, y)) d \mu_{0}(y)=0
$$

and

$$
\int_{\mathbb{R}^{n}} \varphi(0, X(0,0, y)) d \mu_{0}(y)=0
$$

because φ has compact support in $(0, T) \times \mathbb{R}^{n}$. Thus

$$
\begin{aligned}
0 & =\int_{0}^{T} \frac{d}{d t} \int_{\mathbb{R}^{n}} \varphi(t, X(t, 0, y)) d \mu_{0}(y) \\
& =\int_{0}^{T} \int_{\mathbb{R}^{n}} \partial_{t} \varphi(t, x)+\left\langle\nabla_{x} \varphi(t, x), V(t, x)\right\rangle d \mu(x) d t
\end{aligned}
$$

from which we conclude that μ is a weak solution to the conservative transport equation with the relevant initial data.

- What is left to show is the uniqueness of the solution. So let μ be any solution to the conservative transport equation with the relevant initial data. Further let $\psi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ be arbitrary. Then set

$$
\nu(t)=X(t, 0, \cdot) \sharp \mu .
$$

Now let $\xi \in C_{c}^{\infty}((0, T))$ be arbitrary. We define the C^{1}-function $\Psi:[0, T] \times \mathbb{R}^{n}$ as

$$
t, y \mapsto \xi(t) \psi(X(0, t, y))
$$

We note that in the previous talk it was shown that there is a $\kappa>0$ such that

$$
|X(s, t, y)| \leq(|y|+\kappa T) e^{\kappa T}
$$

for all $y \in \mathbb{R}^{n}$ and $s, t \in[0 . T]$. Thus the fact that the support of ψ is compact implies as well that $\Psi(t, \cdot)$ has compact support for any $t \in[0, T]$. If we combine this with the fact that ξ has
compact support in $(0, T)$, we obtain that Ψ has compact support in $(0, T) \times \mathbb{R}^{n}$. Then we note that

$$
\begin{aligned}
& \partial_{t} \Psi(t, y)+\left\langle V(t, y), \nabla_{y} \Psi(t, y)\right\rangle \\
= & \xi(t)\langle\underbrace{\partial_{t} X(0, t, y)}_{=-V(t, y)}, \nabla_{y} \psi\rangle+\xi^{\prime}(t) \psi(y)+\left\langle V(t, y), \nabla_{y} \Psi(t, y)\right\rangle \\
= & \xi^{\prime}(t) \psi(X(0, t, y)) .
\end{aligned}
$$

We further note that

$$
\begin{aligned}
-\int_{0}^{T} \xi^{\prime}(t)\left(\int_{\mathbb{R}^{n}} \psi(x) d \nu(t)(x)\right) d t & =-\int_{0}^{T} \int_{\mathbb{R}^{n}} \xi^{\prime}(t) \psi(X(0, t, y)) d \mu(t)(y) d t \\
& =-\int_{0}^{T} \int_{\mathbb{R}^{n}} \partial_{t} \Psi(t, y)+\left\langle V(t, y), \nabla_{y} \Psi(t, y)\right\rangle d \mu(t)(y) d t \\
& =0,
\end{aligned}
$$

where we use that μ is a weak solution to the transport equation in the last step. This implies that the weak derivative of the map

$$
[0, T] \ni t \mapsto \int_{\mathbb{R}^{n}} \psi(x) d \nu(t)(x) \in \mathbb{R}
$$

is 0 , which in turn implies that this function is constant. Thus

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \psi(x) d \nu(t)(x) & =\int_{\mathbb{R}^{n}} \psi(x) d \nu(0)(x) \\
& =\int_{\mathbb{R}^{n}} \psi(x) d \mu(t)(x)=\int_{\mathbb{R}^{n}} \psi(x) d \mu_{0}(x)
\end{aligned}
$$

which implies (since $\psi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ was arbitrary) that

$$
\nu(t)=X(0, t, \cdot) \sharp \mu(t)=\mu_{0} \Longrightarrow \mu(t)=X(t, 0, \cdot) \sharp \mu_{0}
$$

and thus concludes the proof.

We will now consider a simple example:
Example 4.11. Let $n=2, \mu_{0}=\delta_{(\ell, 0)}$ for some $\ell \in \mathbb{R}$ and $V\left(t,\left(x_{1}, x_{2}\right)\right)=\left(-x_{2}, x_{1}\right)$. Then we can see directly, that when we identify $\mathbb{R}^{2} \cong \mathbb{C}$ we get

$$
X(t, s, y)=e^{i(s-t)} y
$$

And thus we obtain

$$
\begin{aligned}
\mu(t) & =X(t, 0, \cdot) \sharp \mu_{0}=\left(y \mapsto e^{-i t} y\right) \sharp \delta_{(\ell, 0)} \\
& =\delta_{(\ell \cos t, \ell \sin t)} .
\end{aligned}
$$

Here it is useful to keep in mind why we even want to look at measure valued solutions: At some point we want to look at (physical) systems made up of many particles. The measure can then be interpreted as the probability distribution of a random choice of particle from this system. Our example would be the (boring) case of a system with just one particle.

To conclude the talk we will see that if V additionally satisfies (H3) we get a C^{1} solution for a C^{1} initial value.

Theorem 4.12. Let $V \in C^{1}\left([0, T] \times \mathbb{R}^{n}\right)$ be a vector field that satisfies (H1)-(H3) and let X be its characteristic flow. Further let $f_{0} \in C^{1}\left(\mathbb{R}^{n}\right)$. Then the Cauchy-problem

$$
\left\{\begin{array}{l}
\partial_{t} f+\operatorname{div}_{x}(f V)=0 \\
\left.f\right|_{t_{0}}=f_{0}
\end{array}\right.
$$

has a unique weak solution μ given by

$$
f(t, x)=f_{0}(X(0, t, x)) \operatorname{det}\left(D_{x} X(0, t, x)\right)
$$

Figure 2. A figure visualizing example 4.11 .

Proof. - We first show that the solution to this equation is unique. For this it suffices to show that any solution with initial data $f_{0}=0$ vanishes. So assume $g \in C^{1}\left([0, T] \times \mathbb{R}^{n}\right)$ is such that

$$
\left\{\begin{array}{l}
\partial_{t} g+\operatorname{div}_{x}(g V)=0 \\
\left.g\right|_{t_{0}}=0
\end{array}\right.
$$

Then we further have

$$
\begin{aligned}
0 & =\partial_{t} g+\operatorname{div}_{x}(g V)=\partial_{t} g+g \operatorname{div}_{x} V+g\left\langle V, \nabla_{x} g\right\rangle \\
\Longrightarrow \partial_{t} g+g\left\langle V, \nabla_{x} g\right\rangle & =-g \operatorname{div}_{x} V .
\end{aligned}
$$

Together with the properties of the characteristic flow we conclude that the function

$$
[0, T] \ni t \mapsto g(t, X(t, 0, y))
$$

is C^{1} and satisfies for any $y \in \mathbb{R}^{n}$ the ordinary differential equation

$$
\left\{\begin{array}{l}
\left.\frac{d}{d t} g(t, X(t, 0, y))=-g(t, X(t, 0, y))\left(\operatorname{div}_{x} V\right)(t, 0, y)\right) \\
\left.g\right|_{t=0}=0
\end{array}\right.
$$

which means that it must vanish, which by $X(t, 0, \cdot)$ being a diffeomorphism implies that g vanishes. Thus we have uniqueness.

- We also want to show that $f \in C^{1}\left([0, T] \times \mathbb{R}^{n}\right)$ and that our formula is correct. For this we decompose f_{0} using the Japanese-Bracket ${ }^{3}$. We write

$$
f_{0}=\underbrace{\left\langle f_{0}\right\rangle}_{=: f_{0}^{(1)}}-\underbrace{\left(-f_{0}+\left\langle f_{0}\right\rangle\right)}_{=: f_{0}^{(2)}} .
$$

Now let

$$
\begin{aligned}
& f^{(1)}(t, x)=f_{0}^{(1)}(X(0, t, x)) \operatorname{det}\left(D_{x} X(0, t, x)\right) \\
& f^{(2)}(t, x)=f_{0}^{(2)}(X(0, t, x)) \operatorname{det}\left(D_{x} X(0, t, x)\right) .
\end{aligned}
$$

Then note

$$
\begin{aligned}
\mu^{(1)}(t) & :=X(t, 0, \cdot) \sharp\left(f_{0}^{(1)} \lambda\right)=f^{(1)} \lambda \\
\mu^{(2)}(t) & :=X(t, 0, \cdot) \sharp\left(f_{0}^{(2)} \lambda\right)=f^{(2)} \lambda,
\end{aligned}
$$

are solutions to the conservative transport equation with the respective initial data. Note that the problem has now the right form since both $f_{0}^{(1)}$ and $f_{0}^{(2)}$ are non-negative and thus $f_{0}^{(1)} \lambda, f_{0}^{(2)} \lambda \in$ $\mathcal{M}^{+}\left(\mathbb{R}^{n}\right)$. Here we use our earlier result on the push-forward of the Lebesgue measure λ under a diffeomorphism. Now note that by linearity $\mu^{(1)}-\mu^{(2)}$ is a weak solution of the conservative transport equation with initial data $\mu_{0}=f_{0} \lambda$. Thus $f=f^{(1)}-f^{(2)}$ since $f \lambda$ is then the unique (weak) solution to the conservative transport equation. However our formula gives us that f is C^{1} and thus due to the result of the last talk it is a classical solution as well.

[^1]
References

[Gol13] F. Golse, Mean field kinetic equations, https://metaphor.ethz.ch/x/2022/fs/401-4820-22L/notes/ PolyKinetic.pdf 2013.

[^0]: $1_{\text {i.e. passing to }}$ linear combinations of finitely many indicator functions and then by density onto all integrable functions.
 ${ }^{2}$ here we exchange x with $T^{-1}(x)$

[^1]: ${ }^{3}\langle x\rangle=\sqrt{1+|x|^{2}}$.

