## STUDENT SEMINAR: AN INTRODUCTION TO MEAN-FIELD LIMITS FOR VLASOV EQUATIONS

ABSTRACT. In today's<sup>1</sup> talk we focus on the transport equation in conservative form, namely

 $\partial_t \mu + \operatorname{div}_x(\mu V) = 0.$ 

We discuss the existence and uniqueness of weak solutions as well as  $C^1$ -solutions under more restrictive conditions. The talk follows section 2.3 of [Gol13].

# TALK 4: CONSERVATIVE TRANSPORT AND WEAK SOLUTIONS

Adrian Dawid

### A. Basic Definitions

**Definition 4.1.** Let  $(X, \Omega_X), (Y, \Omega_Y)$  be measurable spaces,  $f : X \to Y$  a measurable function and  $\mu : \Omega_X \to \mathbb{R}_{>0}$  a measure on  $(X, \Omega_X)$ . Then the measure  $f \sharp \mu : \Omega_Y \to \mathbb{R}_{>0}$  defined by

$$f \sharp \mu(U) \coloneqq \mu(f^{-1}(U)) \forall U \in \Omega_Y$$

is called the *push-forward measure* of  $\mu$  by f.

**Example 4.2.** Consider  $X = \{0, 1\}$  with the counting measure  $\mu$  and let  $Y = \mathbb{R}$  with the usual Lebesgue measure and consider the measurable function  $i : X \hookrightarrow \mathbb{R}$ . Then

$$i\sharp\mu(X) = |X \cap \{0,1\}| \implies i\sharp\mu = \delta_0 + \delta_1.$$

**Example 4.3.** Consider the Lebesgue-measurable function  $f : \mathbb{R} \to \mathbb{R}$  given by  $x \mapsto x + \alpha$  for  $\alpha \in \mathbb{R}$  and the Lebesgue measure  $\lambda$  on  $\mathbb{R}$ . Then

$$f \sharp \lambda = \lambda$$

since the Lebesgue measure is translation invariant.

**Example 4.4.** A more interesting example is given by the following: Let  $X = [0,1] \times [0,2\pi]$  with  $\mu$  being the uniform probability measure on X. Let  $Y = D^2 \subset \mathbb{R}^2$  be the closed unit disk, then consider the measurable function

$$f: X \to D^2$$
$$t, \theta \mapsto r \cdot (\cos \theta, \sin \theta).$$

We know that

$$f \sharp \mu(r_2 D^2 \setminus r_1 D^2) = r_2 - r_1$$

for any  $0 \leq r_1 \leq r_2 \leq 1$ . Indeed we have for any measurable  $U \subset D^2$ , that

$$f \sharp \mu(U) = \iint_U \frac{1}{2\pi r} dr d\theta,$$

i.e.  $f \sharp \mu$  admits a density w.r.t. the Lebesgue measure on  $D^2$ .

**Proposition 4.5.** Let  $(X, \Omega_X), (Y, \Omega_Y)$  be measurable spaces,  $T : X \to Y$  a measurable function and  $\mu : \Omega_X \to \mathbb{R}_{\geq 0}$  a measure on  $(X, \Omega_X)$ . Let  $\nu := T \sharp \mu$ , then

$$\varphi \in L^1(Y,\nu) \implies \varphi \circ T \in L^1(X,\mu)$$

with

$$\int_{Y} \varphi d\nu = \int_{X} \varphi \circ T d\mu$$

Date: March 28, 2022.



FIGURE 1. The density of  $f \sharp \mu$  from example 4.4 on an annulus going from a small radius to radius 1.

*Proof.* For any measurable set  $U \in \Omega_Y$  we have that

$$1_U \circ T = 1_{T^{-1}(U)},$$

which by construction of  $\nu$  implies

$$\int_{Y} \mathbb{1}_{U} d\nu = \nu(U) = \mu(T^{-1}(U)) = \int_{X} \mathbb{1}_{T^{-1}(U)} d\mu = \int_{X} (\mathbb{1}_{U} \circ T) d\mu$$

Thus the proposition is true for indicator functions, then by the standard machinery of *measure-theoretic* induction<sup>1</sup> this gives us the proposition for  $L^1(Y,\nu)$ .

We can further see a formula for the concrete example of a diffeomorphism and the Lebesgue measure:

**Corollary 4.6.** Let  $f \in L^1(\mathbb{R}^n)$  with  $f \geq 0$  almost-everywhere on  $\mathbb{R}^n$  and let  $T : \mathbb{R}^n \to \mathbb{R}^n$  be a  $(C^1)$ -diffeomorphism. Then

$$T\sharp(f\lambda) = f \circ T^{-1} \cdot \left|\det\left(DT \circ T^{-1}\right)\right|^{-1} \cdot \lambda,$$

where  $\lambda$  again is the Lebesgue measure on  $\mathbb{R}^n$ .

*Proof.* Let  $U \subset \mathbb{R}^n$  be a Lebesgue-measurable subset, then

$$T\sharp(f\lambda)(U) = f \cdot \lambda(T^{-1}(U)) = \int_{\mathbb{R}^n} f \cdot \mathbb{1}_{T^{-1}(U)} d\lambda$$

Since T is a diffeomorphism we can apply the change of variables<sup>2</sup> formula to this integral to obtain the following:

$$\begin{split} \int_{\mathbb{R}^n} f(x) \cdot \mathbb{1}_{T^{-1}(U)}(x) d\lambda(x) &= \int_{\mathbb{R}^n} f(T^{-1}(x)) \cdot \mathbb{1}_{T^{-1}(U)}(T^{-1}(x)) \cdot \left|\det D_x T^{-1}\right| d\lambda(x) \\ &= \int_{\mathbb{R}^n} f(T^{-1}(x)) \cdot \mathbb{1}_U(x) \cdot \underbrace{\left|\det D_x T^{-1}\right|}_{=\left|\det D_{T^{-1}(x)} T\right|^{-1}} d\lambda(x) \\ &= \int_{\mathbb{R}^n} (f(T^{-1}(x)) \left|\det D_{T^{-1}(x)} T\right|^{-1}) \cdot \mathbb{1}_U(x) d\lambda(x) \\ &= (f \circ T^{-1} \cdot \left|\det (DT \circ T^{-1})\right|^{-1} \cdot \lambda)(U), \end{split}$$

thus completing the proof.

**Definition 4.7.** Let  $w\mathcal{M}(\mathbb{R}^n)$  denote the set of Radon measures on  $\mathbb{R}^n$  topologized with the weak topology.

<sup>&</sup>lt;sup>1</sup>i.e. passing to linear combinations of finitely many indicator functions and then by density onto all integrable functions. <sup>2</sup>here we exchange x with  $T^{-1}(x)$ 

### **B.** Weak Solutions

We will now give the definition of a weak solution to the conservative transport equation.

**Definition 4.8.** Let  $V : [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$  and let  $\mu_0 \in \mathcal{M}(\mathbb{R}^n)$ . A weak solution to the conservative transport equation

$$\begin{cases} \partial_t \mu + \operatorname{div}_x(\mu V) = 0\\ \mu|_{t=0} = \mu_0, \end{cases}$$

is  $\mu \in C([0,T], w\mathcal{M}(\mathbb{R}^n))$  s.t.  $\mu|_{t=0} = \mu_0$  and for any  $\varphi \in C_c^1((0,T) \times \mathbb{R}^n)$  we have

$$\int_0^T \int_{\mathbb{R}^n} (\partial_t \varphi(t, x) + V(t, x) \cdot \nabla_x \varphi(t, x)) d\mu(t, \cdot)(x) dt = 0$$

A natural question to ask is, why this is a sensible definition. The answer is given by the following proposition:

**Proposition 4.9.** Let  $f \in C^1([0,T] \times \mathbb{R}^n)$ , then

$$\partial_t f + \operatorname{div}_x(fV) \equiv 0 \iff \int_0^T \int_{\mathbb{R}^n} (\partial_t \varphi(t, x) + V(t, x) \cdot \nabla_x \varphi(t, x)) f(t, x) dx dt = 0 \forall \varphi \in C_c^1((0, T) \times \mathbb{R}^n).$$

We can easily see that this equation is equivalent to the weak formulation for  $\mu(t, \cdot) = f(t, \cdot) \cdot \lambda$  with  $\lambda$  being the Lebesgue measure. So now let us prove the proposition.

*Proof.* We start by defining the following vector field:

$$\begin{split} W: [0,T] \times \mathbb{R}^n &\to \mathbb{R} \times \mathbb{R}^n \\ (t,x) &\mapsto \begin{cases} (\varphi(t,x) \cdot f(t,x), \varphi(t,x) \cdot f(t,x) \cdot V(t,x)) & \text{if } t \in (0,T) \\ 0 & \text{if } t \in \{0,1\} \end{cases} \end{split}$$

By construction this vector field is in  $C_c^1((0,T) \times \mathbb{R}^n, \mathbb{R} \times \mathbb{R}^n)$ . Thus it vanishes on the boundary which by Green's formula gives us

$$0 = \int_{(0,T)\times\mathbb{R}^n} \operatorname{div}_{t,x}(W(t,x)) dx dt$$
$$= \int_{(0,T)\times\mathbb{R}^n} \operatorname{div}_{t,x}(f(t,x) \cdot \varphi(t,x), f(t,x) \cdot \varphi(t,x) \cdot V(t,x)) dx dt.$$

Now we take a more exact look at the expression inside the integral and obtain:

$$\begin{aligned} \operatorname{div}_{t} x, & (f(t,x) \cdot \varphi(t,x), f(t,x) \cdot \varphi(t,x) \cdot V(t,x)) \\ &= \partial_{t}(f(t,x)\varphi(t,x)) + \operatorname{div}_{x}(f(t,x)\varphi(t,x)V(t,x)) \\ &= \partial_{t}(f(t,x)\varphi(t,x)) + \varphi(t,x) \operatorname{div}_{x}(f(t,xV(t,x)) + \langle \nabla_{x}\varphi, f(t,x)V(t,x) \rangle \\ &= \partial_{t}(f(t,x)\varphi(t,x)) + \varphi(t,x) \operatorname{div}_{x}(f(t,xV(t,x)) + f(t,x)\langle \nabla_{x}\varphi, V(t,x) \rangle \\ &= \varphi(t,x)(\partial_{t}f(t,x) + \operatorname{div}_{x}(f(t,x)V(t,x))) + f(t,x(\partial_{t}\varphi(t,x) + f(t,x)\langle \nabla_{x}\varphi, V(t,x) \rangle \end{aligned}$$

Combining this with the fact that the integral vanishes we obtain the following result:

$$\int_{(0,T)\times\mathbb{R}^n} f(t,x)(\partial_t \varphi(t,x) + \langle V(t,x), \nabla_x \varphi(t,x) \rangle) dx dt$$
$$= -\int_{(0,T)\times\mathbb{R}^n} \varphi(t,x)(\partial_t f(t,x) + \operatorname{div}_x(f(t,x) \cdot V(t,x)) dx dt$$

So, if  $\partial_t f + \operatorname{div}_x(fV) = 0$ , then we have

$$\int_{(0,T)\times\mathbb{R}^n} f(t,x)(\partial_t \varphi(t,x) + \langle V(t,x), \nabla_x \varphi(t,x) \rangle) dx dt = 0,$$

as claimed. Conversely, if for any  $\varphi \in C^1_c((0,T) \times \mathbb{R}^n)$  we have

$$\int_0^T \int_{\mathbb{R}^n} (\partial_t \varphi(t, x) + V(t, x) \cdot \nabla_x \varphi(t, x)) f(t, x) dx dt = 0,$$

then  $\partial_t f + \operatorname{div}_x(fV)$  must vanish almost-everywhere and thus by its continuity must vanish. This concludes the proof.

#### C. Solutions

We will now see that weak solutions to the conservative transport equation exist under rather general circumstances and are given by a formula that is very similar to (and also compatible with) the case treated in last week's talk.

**Theorem 4.10.** Let  $V \in C^1([0,T] \times \mathbb{R}^n)$  be a vector field that satisfies (H1) and (H2) and let X be its characteristic flow. Further let  $\mu_0 \in \mathcal{M}^+(\mathbb{R}^n)$ . Then the Cauchy-problem

$$\begin{cases} \partial_t \mu + \operatorname{div}_x(\mu V) = 0\\ \mu|_{t_0} = \mu_0 \end{cases}$$

has a unique weak solution  $\mu$  given by

$$\mu(t) = X(t, 0, \cdot) \sharp \mu_0$$

for any  $t \in [0, T]$ .

• We first show the existence of a weak solution. This is done by checking that the formula given in the theorem is indeed a solution. For this let  $\varphi \in C_c^1((0,T) \times \mathbb{R}^n)$  be arbitrary. Then we define the function

$$t\mapsto \int_{\mathbb{R}^n}\varphi(t,X(t,0,y))d\mu_0(y).$$

We know from the results on the flow that this is of class  $C^1$ . Now we observe that

$$\begin{split} &\frac{d}{dt} \int_{\mathbb{R}^n} \varphi(t, X(t, 0, y)) d\mu_0(y) \\ &= \int_{\mathbb{R}^n} \frac{d}{dt} \varphi(t, X(t, 0, y)) d\mu_0(y) \\ &= \int_{\mathbb{R}^n} \partial_t \varphi(t, X(t, 0, y)) + \langle \nabla_x \varphi(t, X(t, 0, y)), \underbrace{\partial_t X(t, 0, y)}_{=V(t, X(t, 0, y))} \rangle d\mu_0(y) \\ &= \int_{\mathbb{R}^n} \partial_t \varphi(t, x) + \langle \nabla_x \varphi(t, x), V(t, x) \rangle d\mu(x), \end{split}$$

where we use the integral formula for the push-forward measure in the last line. Next we observe that

$$\int_{\mathbb{R}^n} \varphi(T, X(T, 0, y)) d\mu_0(y) = 0$$

and

$$\int_{\mathbb{R}^n} \varphi(0, X(0, 0, y)) d\mu_0(y) = 0$$

because  $\varphi$  has compact support in  $(0,T) \times \mathbb{R}^n$ . Thus

$$0 = \int_0^T \frac{d}{dt} \int_{\mathbb{R}^n} \varphi(t, X(t, 0, y)) d\mu_0(y)$$
  
= 
$$\int_0^T \int_{\mathbb{R}^n} \partial_t \varphi(t, x) + \langle \nabla_x \varphi(t, x), V(t, x) \rangle d\mu(x) dt$$

from which we conclude that  $\mu$  is a weak solution to the conservative transport equation with the relevant initial data.

• What is left to show is the uniqueness of the solution. So let  $\mu$  be any solution to the conservative transport equation with the relevant initial data. Further let  $\psi \in C_c^1(\mathbb{R}^n)$  be arbitrary. Then set

$$\nu(t) = X(t, 0, \cdot) \sharp \mu.$$

Now let  $\xi \in C_c^{\infty}((0,T))$  be arbitrary. We define the  $C^1$ -function  $\Psi: [0,T] \times \mathbb{R}^n$  as

$$t, y \mapsto \xi(t)\psi(X(0, t, y)).$$

We note that in the previous talk it was shown that there is a  $\kappa > 0$  such that

$$|X(s,t,y)| \le (|y| + \kappa T)e^{\kappa T}$$

for all  $y \in \mathbb{R}^n$  and  $s, t \in [0,T]$ . Thus the fact that the support of  $\psi$  is compact implies as well that  $\Psi(t, \cdot)$  has compact support for any  $t \in [0, T]$ . If we combine this with the fact that  $\xi$  has

compact support in (0,T), we obtain that  $\Psi$  has compact support in  $(0,T) \times \mathbb{R}^n$ . Then we note that

$$\begin{split} &\partial_t \Psi(t,y) + \langle V(t,y), \nabla_y \Psi(t,y) \rangle \\ = & \xi(t) \langle \underbrace{\partial_t X(0,t,y)}_{=-V(t,y)}, \nabla_y \psi \rangle + \xi'(t) \psi(y) + \langle V(t,y), \nabla_y \Psi(t,y) \rangle \\ = & \xi'(t) \psi(X(0,t,y)). \end{split}$$

We further note that

$$\begin{split} -\int_0^T \xi'(t) \left( \int_{\mathbb{R}^n} \psi(x) d\nu(t)(x) \right) dt &= -\int_0^T \int_{\mathbb{R}^n} \xi'(t) \psi(X(0,t,y)) d\mu(t)(y) dt \\ &= -\int_0^T \int_{\mathbb{R}^n} \partial_t \Psi(t,y) + \langle V(t,y), \nabla_y \Psi(t,y) \rangle d\mu(t)(y) dt \\ &= 0, \end{split}$$

where we use that  $\mu$  is a weak solution to the transport equation in the last step. This implies that the weak derivative of the map

$$[0,T] \ni t \mapsto \int_{\mathbb{R}^n} \psi(x) d\nu(t)(x) \in \mathbb{R}$$

is 0, which in turn implies that this function is constant. Thus

$$\int_{\mathbb{R}^n} \psi(x) d\nu(t)(x) = \int_{\mathbb{R}^n} \psi(x) d\nu(0)(x)$$
$$= \int_{\mathbb{R}^n} \psi(x) d\mu(t)(x) = \int_{\mathbb{R}^n} \psi(x) d\mu_0(x)$$

which implies (since  $\psi \in C_c^1(\mathbb{R}^n)$  was arbitrary) that

$$\nu(t) = X(0,t,\cdot) \sharp \mu(t) = \mu_0 \implies \mu(t) = X(t,0,\cdot) \sharp \mu_0$$

and thus concludes the proof.

We will now consider a simple example:

**Example 4.11.** Let n = 2,  $\mu_0 = \delta_{(\ell,0)}$  for some  $\ell \in \mathbb{R}$  and  $V(t, (x_1, x_2)) = (-x_2, x_1)$ . Then we can see directly, that when we identify  $\mathbb{R}^2 \cong \mathbb{C}$  we get

$$X(t,s,y) = e^{i(s-t)}y.$$

And thus we obtain

$$\mu(t) = X(t, 0, \cdot) \sharp \mu_0 = (y \mapsto e^{-it}y) \sharp \delta_{(\ell, 0)}$$
$$= \delta_{(\ell \cos t, \ell \sin t)}.$$

Here it is useful to keep in mind why we even want to look at measure valued solutions: At some point we want to look at (physical) systems made up of many particles. The measure can then be interpreted as the probability distribution of a random choice of particle from this system. Our example would be the (boring) case of a system with just one particle.

To conclude the talk we will see that if V additionally satisfies (H3) we get a  $C^1$  solution for a  $C^1$  initial value.

**Theorem 4.12.** Let  $V \in C^1([0,T] \times \mathbb{R}^n)$  be a vector field that satisfies (H1)-(H3) and let X be its characteristic flow. Further let  $f_0 \in C^1(\mathbb{R}^n)$ . Then the Cauchy-problem

$$\begin{cases} \partial_t f + \operatorname{div}_x(fV) = 0\\ f|_{t_0} = f_0 \end{cases}$$

has a unique weak solution  $\mu$  given by

$$f(t,x) = f_0(X(0,t,x)) \det(D_x X(0,t,x))$$

| - |   |   |   |
|---|---|---|---|
|   |   |   |   |
| L |   |   |   |
| L |   |   |   |
| L |   |   |   |
| - | - | - | - |



FIGURE 2. A figure visualizing example 4.11.

• We first show that the solution to this equation is unique. For this it suffices to show that any solution with initial data  $f_0 = 0$  vanishes. So assume  $g \in C^1([0,T] \times \mathbb{R}^n)$  is such that

$$\begin{cases} \partial_t g + \operatorname{div}_x(gV) = 0\\ g|_{t_0} = 0. \end{cases}$$

Then we further have

$$0 = \partial_t g + \operatorname{div}_x(gV) = \partial_t g + g \operatorname{div}_x V + g \langle V, \nabla_x g \rangle$$
$$\implies \partial_t g + g \langle V, \nabla_x g \rangle = -g \operatorname{div}_x V.$$

Together with the properties of the characteristic flow we conclude that the function

$$[0,T] \ni t \mapsto g(t, X(t,0,y))$$

is  $C^1$  and satisfies for any  $y \in \mathbb{R}^n$  the ordinary differential equation

$$\begin{cases} \frac{d}{dt}g(t, X(t, 0, y)) = -g(t, X(t, 0, y))(\operatorname{div}_x V)(t, 0, y))\\ g|_{t=0} = 0 \end{cases}$$

which means that it must vanish, which by  $X(t, 0, \cdot)$  being a diffeomorphism implies that g vanishes. Thus we have uniqueness.

• We also want to show that  $f \in C^1([0,T] \times \mathbb{R}^n)$  and that our formula is correct. For this we decompose  $f_0$  using the Japanese-Bracket<sup>3</sup>. We write

$$f_0 = \underbrace{\langle f_0 \rangle}_{=:f_0^{(1)}} - \underbrace{(-f_0 + \langle f_0 \rangle)}_{=:f_0^{(2)}}$$

Now let

$$f^{(1)}(t,x) = f_0^{(1)}(X(0,t,x)) \det(D_x X(0,t,x))$$
  
$$f^{(2)}(t,x) = f_0^{(2)}(X(0,t,x)) \det(D_x X(0,t,x)).$$

Then note

$$\begin{split} \mu^{(1)}(t) &\coloneqq X(t,0,\cdot) \sharp (f_0^{(1)}\lambda) = f^{(1)}\lambda \\ \mu^{(2)}(t) &\coloneqq X(t,0,\cdot) \sharp (f_0^{(2)}\lambda) = f^{(2)}\lambda, \end{split}$$

are solutions to the conservative transport equation with the respective initial data. Note that the problem has now the right form since both  $f_0^{(1)}$  and  $f_0^{(2)}$  are non-negative and thus  $f_0^{(1)}\lambda, f_0^{(2)}\lambda \in \mathcal{M}^+(\mathbb{R}^n)$ . Here we use our earlier result on the push-forward of the Lebesgue measure  $\lambda$  under a diffeomorphism. Now note that by linearity  $\mu^{(1)} - \mu^{(2)}$  is a weak solution of the conservative transport equation with initial data  $\mu_0 = f_0\lambda$ . Thus  $f = f^{(1)} - f^{(2)}$  since  $f\lambda$  is then the unique (weak) solution to the conservative transport equation. However, our formula gives us that f is  $C^1$  and thus due to the result of the last talk it is a classical solution as well.

$$^{3}\langle x\rangle =\sqrt{1+|x|^{2}}.$$

### References

[Gol13] F. GOLSE, Mean field kinetic equations, https://metaphor.ethz.ch/x/2022/fs/401-4820-22L/notes/ PolyKinetic.pdf, 2013.