
STUDENT SEMINAR:

AN INTRODUCTION TO MEAN-FIELD LIMITS FOR VLASOV EQUATIONS

Abstract. In today’s1 talk we focus on the transport equation in conservative form, namely

∂tµ+ divx(µV ) = 0.

We discuss the existence and uniqueness of weak solutions as well as C1-solutions under more restrictive
conditions. The talk follows section 2.3 of [Gol13].

Talk 4: Conservative Transport and Weak Solutions

Adrian Dawid

A. Basic Definitions

Definition 4.1. Let (X,ΩX), (Y,ΩY ) be measurable spaces, f : X → Y a measurable function and
µ : ΩX → R≥0 a measure on (X,ΩX). Then the measure f]µ : ΩY → R≥0 defined by

f]µ(U) := µ(f−1(U))∀U ∈ ΩY

is called the push-forward measure of µ by f .

Example 4.2. Consider X = {0, 1} with the counting measure µ and let Y = R with the usual Lebesgue
measure and consider the measurable function i : X ↪→ R. Then

i]µ(X) = |X ∩ {0, 1}| =⇒ i]µ = δ0 + δ1.

Example 4.3. Consider the Lebesgue-measurable function f : R → R given by x 7→ x + α for α ∈ R
and the Lebesgue measure λ on R. Then

f]λ = λ

since the Lebesgue measure is translation invariant.

Example 4.4. A more interesting example is given by the following: Let X = [0, 1] × [0, 2π] with µ
being the uniform probability measure on X. Let Y = D2 ⊂ R2 be the closed unit disk, then consider
the measurable function

f : X → D2

t, θ 7→ r · (cos θ, sin θ).

We know that

f]µ(r2D
2 \ r1D2) = r2 − r1

for any 0 ≤ r1 ≤ r2 ≤ 1. Indeed we have for any measurable U ⊂ D2, that

f]µ(U) =

∫∫
U

1

2πr
drdθ,

i.e. f]µ admits a density w.r.t. the Lebesgue measure on D2.

Proposition 4.5. Let (X,ΩX), (Y,ΩY ) be measurable spaces, T : X → Y a measurable function and
µ : ΩX → R≥0 a measure on (X,ΩX). Let ν := T]µ, then

ϕ ∈ L1(Y, ν) =⇒ ϕ ◦ T ∈ L1(X,µ)

with ∫
Y

ϕdν =

∫
X

ϕ ◦ Tdµ.
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Figure 1. The density of f]µ from example 4.4 on an annulus going from a small radius
to radius 1.

Proof. For any measurable set U ∈ ΩY we have that

1U ◦ T = 1T−1(U),

which by construction of ν implies∫
Y

1Udν = ν(U) = µ(T−1(U)) =

∫
X

1T−1(U)dµ =

∫
X

(1U ◦ T )dµ.

Thus the proposition is true for indicator functions, then by the standard machinery of measure-theoretic
induction1 this gives us the proposition for L1(Y, ν). �

We can further see a formula for the concrete example of a diffeomorphism and the Lebesgue measure:

Corollary 4.6. Let f ∈ L1(Rn) with f ≥ 0 almost-everywhere on Rn and let T : Rn → Rn be a
(C1-)diffeomorphism. Then

T](fλ) = f ◦ T−1 ·
∣∣det

(
DT ◦ T−1

)∣∣−1 · λ,
where λ again is the Lebesgue measure on Rn.

Proof. Let U ⊂ Rn be a Lebesgue-measurable subset, then

T](fλ)(U) = f · λ(T−1(U)) =

∫
Rn

f · 1T−1(U)dλ.

Since T is a diffeomorphism we can apply the change of variables2 formula to this integral to obtain the
following: ∫

Rn

f(x) · 1T−1(U)(x)dλ(x) =

∫
Rn

f(T−1(x)) · 1T−1(U)(T
−1(x)) ·

∣∣detDxT
−1∣∣dλ(x)

=

∫
Rn

f(T−1(x)) · 1U (x) ·
∣∣detDxT

−1∣∣︸ ︷︷ ︸
=|detDT−1(x)T |−1

dλ(x)

=

∫
Rn

(f(T−1(x))
∣∣detDT−1(x)T

∣∣−1) · 1U (x)dλ(x)

= (f ◦ T−1 ·
∣∣det

(
DT ◦ T−1

)∣∣−1 · λ)(U),

thus completing the proof. �

Definition 4.7. Let wM(Rn) denote the set of Radon measures on Rn topologized with the weak
topology.

1i.e. passing to linear combinations of finitely many indicator functions and then by density onto all integrable functions.
2here we exchange x with T−1(x)
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B. Weak Solutions

We will now give the definition of a weak solution to the conservative transport equation.

Definition 4.8. Let V : [0, T ] × Rn → Rn and let µ0 ∈ M(Rn). A weak solution to the conservative
transport equation {

∂tµ+ divx(µV ) = 0

µ|t=0 = µ0,

is µ ∈ C([0, T ], wM(Rn)) s.t. µ|t=0 = µ0 and for any ϕ ∈ C1
c ((0, T )× Rn) we have∫ T

0

∫
Rn

(∂tϕ(t, x) + V (t, x) · ∇xϕ(t, x))dµ(t, ·)(x)dt = 0.

A natural question to ask is, why this is a sensible definition. The answer is given by the following
proposition:

Proposition 4.9. Let f ∈ C1([0, T ]× Rn), then

∂tf + divx(fV ) ≡ 0 ⇐⇒
∫ T

0

∫
Rn

(∂tϕ(t, x) + V (t, x) · ∇xϕ(t, x))f(t, x)dxdt = 0∀ϕ ∈ C1
c ((0, T )× Rn).

We can easily see that this equation is equivalent to the weak formulation for µ(t, ·) = f(t, ·) · λ with λ
being the Lebesgue measure. So now let us prove the proposition.

Proof. We start by defining the following vector field:

W : [0, T ]× Rn → R× Rn

(t, x) 7→

{
(ϕ(t, x) · f(t, x), ϕ(t, x) · f(t, x) · V (t, x)) if t ∈ (0, T )

0 if t ∈ {0, 1}.

By construction this vector field is in C1
c ((0, T )× Rn,R× Rn). Thus it vanishes on the boundary which

by Green’s formula gives us

0 =

∫
(0,T )×Rn

divt,x(W (t, x))dxdt

=

∫
(0,T )×Rn

divt,x(f(t, x) · ϕ(t, x), f(t, x) · ϕ(t, x) · V (t, x))dxdt.

Now we take a more exact look at the expression inside the integral and obtain:

divt x,(f(t, x) · ϕ(t, x), f(t, x) · ϕ(t, x) · V (t, x))

= ∂t(f(t, x)ϕ(t, x)) + divx(f(t, x)ϕ(t, x)V (t, x))

= ∂t(f(t, x)ϕ(t, x)) + ϕ(t, x) divx(f(t, xV (t, x)) + 〈∇xϕ, f(t, x)V (t, x)〉
= ∂t(f(t, x)ϕ(t, x)) + ϕ(t, x) divx(f(t, xV (t, x)) + f(t, x)〈∇xϕ, V (t, x)〉
= ϕ(t, x)(∂tf(t, x) + divx(f(t, x)V (t, x))) + f(t, x(∂tϕ(t, x) + f(t, x)〈∇xϕ, V (t, x)〉.

Combining this with the fact that the integral vanishes we obtain the following result:∫
(0,T )×Rn

f(t, x)(∂tϕ(t, x) + 〈V (t, x),∇xϕ(t, x〉))dxdt

= −
∫
(0,T )×Rn

ϕ(t, x)(∂tf(t, x) + divx(f(t, x) · V (t, x))dxdt

So, if ∂tf + divx(fV ) = 0, then we have∫
(0,T )×Rn

f(t, x)(∂tϕ(t, x) + 〈V (t, x),∇xϕ(t, x〉))dxdt = 0,

as claimed. Conversely, if for any ϕ ∈ C1
c ((0, T )× Rn) we have∫ T

0

∫
Rn

(∂tϕ(t, x) + V (t, x) · ∇xϕ(t, x))f(t, x)dxdt = 0,

then ∂tf + divx(fV ) must vanish almost-everywhere and thus by its continuity must vanish. This con-
cludes the proof. �
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C. Solutions

We will now see that weak solutions to the conservative transport equation exist under rather general
circumstances and are given by a formula that is very similar to (and also compatible with) the case
treated in last week’s talk.

Theorem 4.10. Let V ∈ C1([0, T ]× Rn) be a vector field that satisfies (H1) and (H2) and let X be its
characteristic flow. Further let µ0 ∈M+(Rn). Then the Cauchy-problem{

∂tµ+ divx(µV ) = 0

µ|t0 = µ0

has a unique weak solution µ given by

µ(t) = X(t, 0, ·)]µ0

for any t ∈ [0, T ].

Proof. • We first show the existence of a weak solution. This is done by checking that the formula
given in the theorem is indeed a solution. For this let ϕ ∈ C1

c ((0, T ) × Rn) be arbitrary. Then
we define the function

t 7→
∫
Rn

ϕ(t,X(t, 0, y))dµ0(y).

We know from the results on the flow that this is of class C1. Now we observe that

d

dt

∫
Rn

ϕ(t,X(t, 0, y))dµ0(y)

=

∫
Rn

d

dt
ϕ(t,X(t, 0, y))dµ0(y)

=

∫
Rn

∂tϕ(t,X(t, 0, y)) + 〈∇xϕ(t,X(t, 0, y)), ∂tX(t, 0, y)︸ ︷︷ ︸
=V (t,X(t,0,y))

〉dµ0(y)

=

∫
Rn

∂tϕ(t, x) + 〈∇xϕ(t, x), V (t, x)〉dµ(x),

where we use the integral formula for the push-forward measure in the last line. Next we observe
that ∫

Rn

ϕ(T,X(T, 0, y))dµ0(y) = 0

and ∫
Rn

ϕ(0, X(0, 0, y))dµ0(y) = 0

because ϕ has compact support in (0, T )× Rn. Thus

0 =

∫ T

0

d

dt

∫
Rn

ϕ(t,X(t, 0, y))dµ0(y)

=

∫ T

0

∫
Rn

∂tϕ(t, x) + 〈∇xϕ(t, x), V (t, x)〉dµ(x)dt,

from which we conclude that µ is a weak solution to the conservative transport equation with
the relevant initial data.

• What is left to show is the uniqueness of the solution. So let µ be any solution to the conservative
transport equation with the relevant initial data. Further let ψ ∈ C1

c (Rn) be arbitrary. Then set

ν(t) = X(t, 0, ·)]µ.

Now let ξ ∈ C∞c ((0, T )) be arbitrary. We define the C1-function Ψ : [0, T ]× Rn as

t, y 7→ ξ(t)ψ(X(0, t, y)).

We note that in the previous talk it was shown that there is a κ > 0 such that

|X(s, t, y)| ≤ (|y|+ κT )eκT

for all y ∈ Rn and s, t ∈ [0.T ]. Thus the fact that the support of ψ is compact implies as well
that Ψ(t, ·) has compact support for any t ∈ [0, T ]. If we combine this with the fact that ξ has
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compact support in (0, T ), we obtain that Ψ has compact support in (0, T )× Rn. Then we note
that

∂tΨ(t, y) + 〈V (t, y),∇yΨ(t, y)〉
=ξ(t)〈∂tX(0, t, y)︸ ︷︷ ︸

=−V (t,y)

,∇yψ〉+ ξ′(t)ψ(y) + 〈V (t, y),∇yΨ(t, y)〉

=ξ′(t)ψ(X(0, t, y)).

We further note that

−
∫ T

0

ξ′(t)

(∫
Rn

ψ(x)dν(t)(x)

)
dt =−

∫ T

0

∫
Rn

ξ′(t)ψ(X(0, t, y))dµ(t)(y)dt

=−
∫ T

0

∫
Rn

∂tΨ(t, y) + 〈V (t, y),∇yΨ(t, y)〉dµ(t)(y)dt

=0,

where we use that µ is a weak solution to the transport equation in the last step. This implies
that the weak derivative of the map

[0, T ] 3 t 7→
∫
Rn

ψ(x)dν(t)(x) ∈ R

is 0, which in turn implies that this function is constant. Thus∫
Rn

ψ(x)dν(t)(x) =

∫
Rn

ψ(x)dν(0)(x)

=

∫
Rn

ψ(x)dµ(t)(x) =

∫
Rn

ψ(x)dµ0(x)

which implies (since ψ ∈ C1
c (Rn) was arbitrary) that

ν(t) = X(0, t, ·)]µ(t) = µ0 =⇒ µ(t) = X(t, 0, ·)]µ0

and thus concludes the proof.
�

We will now consider a simple example:

Example 4.11. Let n = 2, µ0 = δ(`,0) for some ` ∈ R and V (t, (x1, x2)) = (−x2, x1). Then we can see

directly, that when we identify R2 ∼= C we get

X(t, s, y) = ei(s−t)y.

And thus we obtain

µ(t) = X(t, 0, ·)]µ0 = (y 7→ e−ity)]δ(`,0)

= δ(` cos t,` sin t).

Here it is useful to keep in mind why we even want to look at measure valued solutions: At some point
we want to look at (physical) systems made up of many particles. The measure can then be interpreted
as the probability distribution of a random choice of particle from this system. Our example would be
the (boring) case of a system with just one particle.

To conclude the talk we will see that if V additionally satisfies (H3) we get a C1 solution for a C1

initial value.

Theorem 4.12. Let V ∈ C1([0, T ] × Rn) be a vector field that satisfies (H1)-(H3) and let X be its
characteristic flow. Further let f0 ∈ C1(Rn). Then the Cauchy-problem{

∂tf + divx(fV ) = 0

f |t0 = f0

has a unique weak solution µ given by

f(t, x) = f0(X(0, t, x)) det(DxX(0, t, x)).
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(a) The vector field V . (b) V together with two solutions for ` = 1 and ` = 3
2
.

Figure 2. A figure visualizing example 4.11.

Proof. • We first show that the solution to this equation is unique. For this it suffices to show that
any solution with initial data f0 = 0 vanishes. So assume g ∈ C1([0, T ]× Rn) is such that{

∂tg + divx(gV ) = 0

g|t0 = 0.

Then we further have

0 = ∂tg + divx(gV ) = ∂tg + g divx V + g〈V,∇xg〉
=⇒ ∂tg + g〈V,∇xg〉 = −g divx V.

Together with the properties of the characteristic flow we conclude that the function

[0, T ] 3 t 7→ g(t,X(t, 0, y))

is C1 and satisfies for any y ∈ Rn the ordinary differential equation{
d
dtg(t,X(t, 0, y)) = −g(t,X(t, 0, y))(divx V )(t, 0, y))

g|t=0 = 0

which means that it must vanish, which by X(t, 0, ·) being a diffeomorphism implies that g
vanishes. Thus we have uniqueness.

• We also want to show that f ∈ C1([0, T ] × Rn) and that our formula is correct. For this we
decompose f0 using the Japanese-Bracket3. We write

f0 = 〈f0〉︸︷︷︸
=:f

(1)
0

− (−f0 + 〈f0〉)︸ ︷︷ ︸
=:f

(2)
0

.

Now let

f (1)(t, x) = f
(1)
0 (X(0, t, x)) det(DxX(0, t, x))

f (2)(t, x) = f
(2)
0 (X(0, t, x)) det(DxX(0, t, x)).

Then note

µ(1)(t) := X(t, 0, ·)](f (1)0 λ) = f (1)λ

µ(2)(t) := X(t, 0, ·)](f (2)0 λ) = f (2)λ,

are solutions to the conservative transport equation with the respective initial data. Note that the

problem has now the right form since both f
(1)
0 and f

(2)
0 are non-negative and thus f

(1)
0 λ, f

(2)
0 λ ∈

M+(Rn). Here we use our earlier result on the push-forward of the Lebesgue measure λ under
a diffeomorphism. Now note that by linearity µ(1) − µ(2) is a weak solution of the conservative
transport equation with initial data µ0 = f0λ. Thus f = f (1) − f (2) since fλ is then the unique
(weak) solution to the conservative transport equation. However our formula gives us that f is
C1 and thus due to the result of the last talk it is a classical solution as well.

�

3〈x〉 =
√

1 + |x|2.
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