Only the exercises with an asterisk $\left(^{*}\right)$ will be corrected.

6.1. MC questions.

(a) Which of the following statements are true?
$\square \quad$ Let $X \subset \mathbb{R}^{n}, Y \subset \mathbb{R}^{m}$ and p is a integer. Let $f: X \rightarrow Y$ and $g: Y \rightarrow \mathbb{R}^{p}$ be function. If $g \circ f$ is continuous, then g is continuous or f is continuous.
$\square \quad$ Let $X \subset \mathbb{R}^{n}$ be closed and p is a integer. If $f: X \rightarrow \mathbb{R}^{p}$ is a continuous function, then $f(X)$ is closed.
(b) Which of the following sets are compact?
$\square \quad A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<2022\right\} ;$$B=\left\{(a, b, c) \in \mathbb{R}^{3} \mid a, b, c\right.$ are integers and $\left.a^{2}+b^{2}+c^{2}<2022\right\} ;$$C=\left\{(x, f(x)) \in \mathbb{R}^{2} \mid x \in(0,1], f(x)=\sin \left(\frac{1}{x}\right)\right\} ;$$D=\left\{(\cos \theta, \sin \theta) \in \mathbb{R}^{2} \mid \theta\right.$ is a rational number $\} ;$$E=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 2\right\}$.
(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. For f to be continuous at $(0,0)$, which of the following needs to hold?

Hint: it might be helpful to do Exercise 6.3 first.
$\square \quad$ it is sufficient that, along some direction $v \neq 0$, the directional derivative $D_{v} f(0,0)$ exists.
$\square \quad$ it is sufficient that both the partial derivatives $\partial_{x} f(0,0)$ and $\partial_{y} f(0,0)$ exist.
$\square \quad$ it is sufficient that the directional derivatives $D_{v} f(0,0)$ along every direction $v \in \mathbb{R}^{2} \backslash\{(0,0)\}$ exists.
*6.2. Jacobi matrix Compute the Jacobi matrix of the following functions:
(a)

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad(u, v, w) \mapsto\binom{u v}{w}
$$

(b)

$$
g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad(x, y) \mapsto\left(\begin{array}{c}
x^{2}+e^{y} \\
x+y \\
y
\end{array}\right)
$$

(c)

$$
h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; \quad\left(\begin{array}{l}
r \\
\theta \\
\phi
\end{array}\right) \mapsto\left(\begin{array}{c}
r \cos (\theta) \cos (\phi) \\
r \cos (\theta) \sin (\phi) \\
r \sin (\theta)
\end{array}\right) .
$$

*6.3. Partial derivatives vs. differentiability.

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $v \in \mathbb{R}^{n}$ a vector. When it exists, the limit

$$
D_{v} g(x)=\lim _{h \rightarrow 0} \frac{g(x+h v)-g(x)}{h}
$$

is called the directional derivative of g along v at the point $x \in \mathbb{R}^{n}$. In particular, along the coordinate directions $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ we have $D_{e_{i}} g=\frac{\partial g}{\partial x_{i}}=\partial_{x_{i}} g$.
Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to be the following function

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that, for any point $a \in \mathbb{R}^{2}$ and any direction $u \in \mathbb{R}^{2}, f$ admits a directional derivative $D_{u} f(a)$.
Hint: To prove $D_{u} f(a)$ exists, one needs to show that $t \mapsto f(a+t u)$ is differentiable at the point $t=0$. Recall the definition of differentiability in one variable and use the value $f(0,0)$.
(b) Show that f is not differentiable at the point $(0,0)$.

Hint: Recall that, when f is differentiable at the point $a \in \mathbb{R}^{2}, f$ is also continuous at a.
6.4. Tangent plane. Given the function

$$
\begin{aligned}
f: \Omega & \rightarrow \mathbb{R} \\
(x, y) & \mapsto \sqrt{1-x^{2}-y^{2}},
\end{aligned}
$$

with $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$, compute the tangent plane of the graph of f at the points $(0,0),\left(\frac{\sqrt{2}}{2}, 0\right)$, and $\left(0, \frac{1}{2}\right)$.

