Only the exercises with an asterisk $\left(^{*}\right)$ will be corrected.

13.1. MC questions.

(a) Which of the following statements are true?

Let $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$ be a non-negative, continuous function. Then
$\square \quad$ If $\lim _{x \rightarrow \infty} f(x)=0$, the improper integral $\int_{\mathbb{R}^{n}} f d x$ exists and is finite
$\square \quad$ If the improper integral $\int_{\mathbb{R}^{n}} f d x$ exists and is finite, then $\lim _{x \rightarrow \infty} f(x)=0$
\square If $\lim _{x \rightarrow \infty} f(x)$ does not exist, then the improper integral $\int_{\mathbb{R}^{n}} f d x$ is not finite.
$\square \quad$ If $\lim _{x \rightarrow \infty} f(x)$ exists and is nonzero, the improper integral $\int_{\mathbb{R}^{n}} f d x$ is not finite.
(b) Let $D:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ be the unit ball with boundary $S:=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. Let $f: D \rightarrow \mathbb{R}$ be a C^{1} function, so that there exists a constant $c \neq 0$ for which

$$
f(x, y)=c \quad \forall(x, y) \in S
$$

holds. Choose the correct statement

$$
\begin{aligned}
& \square \quad \int_{D}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y=c \\
& \square \quad \int_{D}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y=0
\end{aligned}
$$

$\square \quad$ The integral $\int_{D}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y$ cannot be calculated with the given information.

*13.2. Integrals in \mathbb{R}^{2}.

Calculate the following integrals.
(a) $\int_{D} x y\left(x^{2}+y^{2}\right) \mathrm{d}(x, y), \quad D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}-2 x<0\right\}$.
(b) $\int_{D} \frac{\sin \left(x^{2}+y^{2}\right)}{2+\cos \left(x^{2}+y^{2}\right)} \mathrm{d}(x, y), \quad D=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x^{2}+y^{2}<4\right\}$.
(c) $\int_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d}(x, y), \quad D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1, x+y>1\right\}$.

13.3. The Astroid.

Let $a>0$. The Astroid $A(a) \subset \mathbb{R}^{2}$ is the geometric figure in the plane defined by

$$
A(a):=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}\right.\right\}
$$

The construction of an Astroid is very geometric (see here). Let $B(a)$ denote the set

$$
B(a)=\left\{(r x, r y) \subset \mathbb{R}^{2} \mid r \in[0,1],(x, y) \in A(a)\right\}
$$

Compute the area of $B(a)$ using the theorem of Green. Note that the theorem of Green is indeed applicable in this case.

Figure 1: The red Astroid $A(a)$ is the boundary of $B(a)$.

*13.4. Improper integral.

Show that the limit

$$
\lim _{R \rightarrow \infty} \int_{[0, R]^{2}} \sin \left(x^{2}+y^{2}\right) d(x, y)
$$

exists.

13.5. Fubini's theorem for an explicit integral.

By computing the integral (justify why it converges)

$$
I=\int_{[0, \infty) \times[a, b]} e^{-x y} d x d y
$$

in two different ways, where $0<a<b$, compute

$$
\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} d x
$$

