Only the exercises with an asterisk $\left(^{*}\right)$ will be corrected.

2.1. MC questions.

(a) Which of the following functions has the property that its arc length is equal to its area under the curve?

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, the arc length between 0 and x is given by

$$
\int_{0}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t
$$

(a) $f(x)=\cosh x$,
(b) $f(x)=x$
(c) $f(x)=e^{x}$
(d) $f(x)=\ln (x)$.

Solution. The condition that the arc length of a function f is equal to its area under the curve can be written as:

$$
\int_{0}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t=\int_{0}^{x} f(t) \mathrm{d} t .
$$

By differentiating both sides, we get:

$$
f(x)=\sqrt{1+\left(f^{\prime}(x)\right)^{2}}
$$

Substituting each of the given functions, we see that only (a) $f(x)=\cosh x$ is a solution of the above ODE.
(b) Choose the correct statement(s). Motivate your answers.

A particular solution of the ODE $y^{\prime \prime}-4 y^{\prime}-12 y=\sin (2 x)$. is:
(a) $\frac{1}{40} \cos (2 x)-\frac{1}{40} \sin 2 x$
(b) $\frac{1}{15} \sin (2 x)$
(c) $\frac{1}{20} \cos (x)$
(d) $\frac{1}{40} \cos (2 x)-\frac{1}{20} \sin (2 x)$.

Solution. Directly plugging in the ODE each of the functions above, one sees that only (d) is correct.
*2.2. Motion of a spring. A piece of mass m connected to a coil spring that can stretch along its length. If $k>0$ denotes the spring constant, the equation of motion of such system is given, according to Hooke and Newton's laws, by

$$
m \ddot{x}(t)=-k x(t),
$$

where $x=x(t)$ denotes the position in time of the piece of mass along the vertical direction. Call $\omega=\sqrt{\frac{k}{m}}$. Find the solution of (\dagger) :
(a) with initial position $x(0)=0$ and initial velocity $\dot{x}(0)=-\omega$.
(b) with initial position $x(0)=1$ and position at time $t=\frac{\pi}{2 \omega}: x\left(\frac{\pi}{2 \omega}\right)=3$.
(c) Is is possible to find a solution so that $x(t) \rightarrow 0$ as $t \rightarrow+\infty$?

Solution. Setting $\omega^{2}=\frac{k}{m}$, we may rewrite the equation in normal form

$$
\ddot{x}+\omega^{2} x=0 .
$$

The characteristic polynomial of the equation is $p(\lambda)=\lambda^{2}+\omega^{2}$ whose roots are $\lambda_{1,2}= \pm i \omega$. Thus the general solution of the ODE is

$$
x(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t), \quad \text { for arbitrary } C_{1}, C_{2} \in \mathbb{R} .
$$

Consequently
(a) With $x(0)=1$ and $\dot{x}(0)=2 \omega$ we get:

$$
\begin{aligned}
x(0)=1 & \Rightarrow C_{1} \cos (0)+C_{2} \sin (0)=C_{1}=0, \\
\dot{x}(0)=2 \omega & \Rightarrow-C_{1} \omega \sin (0)+C_{2} \omega \cos (0)=C_{2} \omega=-\omega .
\end{aligned}
$$

Hence it is $C_{1}=0$ and $C_{2}=-1$. The required solution is then

$$
x(t)=-\sin (\omega t) .
$$

(b) With $x(0)=1$ and $x\left(\frac{\pi}{2 \omega}\right)=3$ we get:

$$
\begin{aligned}
x(0)=1 & \Rightarrow C_{1} \cos (0)+C_{2} \sin (0)=C_{1}=1 \\
x\left(\frac{\pi}{2 \omega}\right)=3 & \Rightarrow C_{1} \cos \left(\frac{\pi}{2}\right)+C_{2} \sin \left(\frac{\pi}{2}\right)=C_{2}=3 .
\end{aligned}
$$

Hence it is $C_{1}=1, C_{2}=3$. The required solution is then

$$
x(t)=\cos (\omega t)+3 \sin (\omega t) .
$$

(c) No, since every solution is periodic.
2.3. Projectile motion. Consider a ball being thrown from height $y_{0}=2 \mathrm{~m}$ at an angle $\theta=30^{\circ}$ with initial speed $v=15 \mathrm{~m} \mathrm{~s}^{-1}$. At which horizontal distance from its starting point will the ball hit the ground?

You may assume that ball's trajectory $(x(t), y(t))$, where $x: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is its horizontal coordinate and $y: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is its vertical coordinate, satisfies the following ODE:

$$
\ddot{x}=0, \quad \ddot{y}=-g .
$$

Here, $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$ is the gravitational acceleration.
Solution. By integrating the equations ($\boldsymbol{\rho}$) twice, we get

$$
\begin{array}{ll}
x(t)=a_{1} t+a_{2}, & a_{1}, a_{2} \in \mathbb{R}, \\
y(t)=-\frac{g t^{2}}{2}+b_{1} t+b_{2}, & b_{1}, b_{2} \in \mathbb{R}
\end{array}
$$

As the initial conditions, we take:

$$
\begin{array}{ll}
x(0)=a_{2}=0, & \dot{x}(0)=a_{1}=v_{0} \cos \theta, \\
y(0)=b_{2}=y_{0}, & \dot{y}(0)=b_{1}=v_{0} \sin \theta .
\end{array}
$$

and therefore the solutions are:

$$
\begin{aligned}
& x(t)=v_{0} \cos \theta \cdot t \\
& y(t)=-\frac{g t^{2}}{2}+v_{0} \sin \theta \cdot t+y_{0}
\end{aligned}
$$

The ball hits the ground when $y\left(t_{\text {hit }}\right)=0$, i.e. at the time

$$
t_{\mathrm{hit}}=\frac{v_{y}+\sqrt{v_{y}^{2}-2 g y_{0}}}{g}
$$

Note that the quadratic equation $y(t)=0$ has two solutions, but only the positive one has physical sense.
The horizontal distance is then

$$
x\left(t_{\mathrm{hit}}\right)=v_{x} \cdot \frac{v_{y}+\sqrt{v_{y}^{2}+2 g y_{0}}}{g}=22.87 \mathrm{~m} .
$$

*2.4. Radioactive decay. Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. It is described by the following equation:

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=-\lambda N
$$

where $\lambda>0$ is a positive constant and N is the amount of the radioactive material.
We define the half life T of a radioactive material as the time required for the half of the initial amount of radioactive material to decay.

Find the expression for the half life T in terms of the constant λ.
Solution. Let N_{0} be the initial amount of radioactive material, i.e. $N(0)=N_{0}$. The solution to the ODE above is then

$$
N(t)=N_{0} e^{-\lambda t}
$$

We want to find the time T at which:

$$
N_{0} e^{-\lambda T}=\frac{1}{2} N_{0} .
$$

From there it follows that

$$
T=\frac{1}{\lambda} \ln 2 .
$$

