Only the exercises with an asterisk $\left(^{*}\right)$ will be corrected.

12.1. MC questions.

(a) Choose the correct statement. Motivate your answer.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous functions and let $B_{r}(0) \subset \mathbb{R}^{n}$ be the ball of radius $r>0$ centred ad the origin. The integral

$$
\int_{B_{r}(0)} f(x) d x
$$

can also be written as
$\square \quad r^{n} \int_{B_{1}(0)} f\left(\frac{1}{r} x\right) d x$
$\square \quad \frac{1}{r^{n}} \int_{B_{1}(0)} f(r x) d x$
$\nabla \quad r^{n} \int_{B_{1}(0)} f(r x) d x$
$\square \quad \frac{1}{r^{n}} \int_{B_{1}(0)} f\left(\frac{1}{r} x\right) d x$
where we denoted $r x=\left(r x_{1}, \ldots, r x_{n}\right)$ and similarly for $\frac{1}{r} x$.
Solution. The correct choice is the third one, namely:

$$
r^{n} \int_{B_{1}(0)} f(r x) d x
$$

Indeed, the dilation that transforms $B_{r}(0)$ into $B_{1}(0)$ is defined by $y=\frac{1}{r} x$, hence the change of variables formula gives

$$
y=r x \quad \Longrightarrow \quad d x_{1} \cdots d x_{n}=r^{n} d y_{1} \cdots d y_{n}
$$

(b) Which of the following vector fields $f: X \rightarrow \mathbb{R}^{n}$ admit a potential?

$$
\square \quad X=\mathbb{R}^{2}, \quad f(x, y)=\binom{x}{x y},
$$

Solution. Note that

$$
\frac{\partial f_{1}}{\partial y}=0 \neq y \frac{\partial f_{2}}{\partial x}
$$

The set X is open, so by Proposition 4.1.13 in the script, the vector field f is not conservative and therefore also does not admit a potential.
$\square \quad X=\mathbb{R}^{2} \backslash\{0\}, \quad f(x, y)=\binom{\frac{-y}{x^{2}+y^{2}}}{\frac{x}{x^{2}+y^{2}}}$
Solution. See Example 4.1.19 (1) in the script.$X=\mathbb{R}^{2}, \quad f(x, y)=\binom{\cos (x)}{\sin (x)}$

Solution. Similar argument as in the first part shows that this vector field is not conservative.
$\nabla \quad X=\mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0}, \quad f(x, y, z)=\left(\begin{array}{c}e^{z} \sin (z) x \\ 0 \\ \frac{1}{2} x^{2} e^{z}(\cos (z)+\sin (z))\end{array}\right)$
Solution. This vector admits a potential: $f=\nabla g$ for

$$
g=\frac{1}{2} e^{z} x^{2} \sin (z)
$$

*12.2. Volume of the region enclosed by graphs of functions.
Let

$$
K_{1}=\left\{(x, y, z): 1 \leq z<\infty, \sqrt{x^{2}+y^{2}} \leq \sqrt{-1+z}\right\}
$$

and

$$
K_{2}=\left\{(x, y, z):-\infty<z \leq 5, \sqrt{x^{2}+y^{2}} \leq \sqrt{5-z}\right\} .
$$

Calculate the volume of $K_{1} \cap K_{2}$.

Solution.

Let

$$
\begin{aligned}
N_{1} & =\left\{(x, y, z): 1 \leq z \leq 3, \sqrt{x^{2}+y^{2}} \leq \sqrt{-1+z}\right\}, \\
N_{2} & =\left\{(x, y, z): 3 \leq z \leq 5, \sqrt{x^{2}+y^{2}} \leq \sqrt{5-z}\right\}, \\
\gamma & =\left\{(x, y, z): z=3, \sqrt{x^{2}+y^{2}}=\sqrt{2}\right\} .
\end{aligned}
$$

Then

$$
K_{1} \cap K_{2}=N_{1} \cup N_{2} \backslash \gamma
$$

and the volume of $K_{1} \cap K_{2}$ is

$$
\begin{equation*}
V\left(K_{1} \cap K_{2}\right)=V\left(N_{1}\right)+V\left(N_{2}\right)-V(\gamma) . \tag{1}
\end{equation*}
$$

Note that that the volume of γ is zero because it is 1-dimensional. We thus get $V\left(K_{1} \cap K_{2}\right)=V\left(N_{1}\right)+V\left(N_{2}\right)$.

We calculate

$$
V\left(N_{1}\right)=\int_{1}^{3}\left(\int_{A_{1}(z)} d x d y\right) d z
$$

and

$$
V\left(N_{2}\right)=\int_{3}^{5}\left(\int_{A_{2}(z)} d x d y\right) d z
$$

where

$$
A_{1}(z)=\left\{(x, y): x^{2}+y^{2} \leq-1+z\right\}
$$

and

$$
A_{2}(z)=\left\{(x, y): x^{2}+y^{2} \leq 5-z\right\} .
$$

Therefore

$$
\begin{aligned}
V\left(N_{1}\right) & =\int_{1}^{3} \pi(-1+z) d z \\
& =\pi\left[-z+\frac{z^{2}}{2}\right]_{1}^{3} \\
& =2 \pi
\end{aligned}
$$

and

$$
\begin{aligned}
V\left(N_{2}\right) & =\int_{3}^{5} \pi(5-z) d z \\
& =\pi\left[5 z-\frac{z^{2}}{2}\right]_{3}^{5} \\
& =2 \pi
\end{aligned}
$$

The volume of $K_{1} \cap K_{2}$ is thus

$$
V\left(K_{1} \cap K_{2}\right)=2 \pi+2 \pi=4 \pi .
$$

12.3. Line integral vs double integral of curl.

The curl of a vector field in \mathbb{R}^{2} is, by definition, the function

$$
\operatorname{curl}(v)=\frac{\partial}{\partial x} v_{2}-\frac{\partial}{\partial y} v_{1} .
$$

Consider the vector field $v(x, y)=\left(y^{2}, x\right)$.
(a) Compute the line integral of v along the circle of radius 2 centered at the origin and along the square of vertices $(\pm 1, \pm 1)$, both oriented counter-clockwise (see the picture).
(b) Now compute the double integral of $\operatorname{curl}(v)$ over the disk D and the square Q enclosed by the curves in (b). What do you notice?

Solution.

(a) Parametrizing the circle ∂D with $\gamma:[0,2 \pi) \rightarrow \partial D, \gamma(t)=2(\cos \varphi, \sin \varphi)$, we see that

$$
\begin{aligned}
\int_{\partial D} v \cdot d \vec{s} & =\int_{0}^{2 \pi}\binom{4(\sin \varphi)^{2}}{2 \cos \varphi} \cdot\binom{-2 \sin \varphi}{2 \cos \varphi} d \varphi \\
& =\int_{0}^{2 \pi}\left(-8(\sin \varphi)^{3}+4(\cos \varphi)^{2}\right) d \varphi=4 \pi
\end{aligned}
$$

As for ∂Q, parametrizations for each side are given by

$$
\begin{aligned}
& q_{1}(t)=(1-t)(1,1)+t(-1,1)=(1-2 t, 1), \\
& q_{2}(t)=(1-t)(-1,1)+t(-1,-1)=(-1,1-2 t), \\
& q_{3}(t)=(1-t)(-1,-1)+t(1,-1)=(-1+2 t,-1), \\
& q_{3}(t)=(1-t)(1,-1)+t(1,1)=(1,-1+2 t),
\end{aligned}
$$

and the result is

$$
\int_{\partial Q} v \cdot d \vec{s}=\sum_{j=1}^{4} \int_{0}^{1} v\left(q_{j}(t)\right) \cdot q_{j}^{\prime}(t) d t=4
$$

(b) The curl of v is $\operatorname{curl}(v)=\frac{\partial}{\partial x} v_{2}-\frac{\partial}{\partial y} v_{1}=1-2 y$.

For D, using polar coordinates we compute

$$
\begin{aligned}
\int_{\gamma} v d \gamma & =\int_{D}(1-2 y) d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(1-2 r \sin (\varphi)) r d r d \varphi \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r-2 r^{2} \sin (\varphi) d r d \varphi \\
& =2 \pi\left[\frac{r^{2}}{2}\right]_{0}^{2}-2 \int_{0}^{2} r^{2} d r \int_{0}^{2 \pi} \sin (\varphi) d \varphi=4 \pi
\end{aligned}
$$

and we see that it coincides with the line integral $\int_{\partial D} v \cdot d \vec{s}$.
As for Q, we see that

$$
\begin{aligned}
\int_{Q}(1-2 y) d x d y & =\int_{-1}^{1} \int_{-1}^{1}(1-2 y) d x d y \\
& =2 \int_{-1}^{1}(1-2 y) d y=2\left(2-\left[y^{2}\right]_{y=-1}^{1}\right)=4
\end{aligned}
$$

Once again this coincides with $\int_{\partial Q} v \cdot d \vec{s}$

*12.4. Volume of a 3 -dimensional ball.

Let $r>0$ and $B_{3}(0, r)=\mathbb{R}^{3} \cap\left\{(x, y, z): x^{2}+y^{2}+z^{2}<r^{2}\right\}$ be the open ball of radius $r>0$. By using a change of coordinates, $f:[0, r) \times[0,2 \pi) \times[0, \pi) \rightarrow B_{3}(0, r)$ is given as follows :

$$
f(t, \theta, \varphi)=\left\{\begin{array}{l}
t \cos (\theta) \sin (\varphi) \\
t \sin (\theta) \sin (\varphi) \\
t \cos (\varphi)
\end{array}\right.
$$

Compute the volume of $B_{3}(0, r)$, defined by

$$
\int_{B_{3}(0, r)} d x d y d z
$$

Solution. One immediately checks that

$$
f:(0, r) \times[0,2 \pi) \times(0, \pi) \rightarrow B_{3}(0, r) \backslash\{(0,0, z) \mid z \in \mathbb{R}\}
$$

is a diffeomorphism, and we compute

$$
D f(t, \theta, \varphi)=\left(\begin{array}{ccc}
\cos (\theta) \sin (\varphi) & -t \sin (\theta) \sin (\varphi) & t \cos (\theta) \cos (\varphi) \\
\sin (\theta) \sin (\varphi) & t \cos (\theta) \sin (\varphi) & t \sin (\theta) \cos (\varphi) \\
\cos (\varphi) & 0 & -t \sin (\varphi) .
\end{array}\right)
$$

By expanding the last line, we find

$$
\begin{aligned}
\operatorname{det} D f(t, \theta, \varphi)= & t^{2} \cos (\varphi) \operatorname{det}\left(\begin{array}{cc}
-\sin (\theta) \sin (\varphi) & \cos (\theta) \cos (\varphi) \\
\cos (\theta) \sin (\varphi) & \sin (\theta) \cos (\varphi)
\end{array}\right) \\
& -t^{2} \sin ^{3}(\varphi) \operatorname{det}\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \\
=- & t^{2} \cos ^{2}(\varphi) \sin (\varphi)-t^{2} \sin ^{3}(\varphi) \\
=- & -t^{2} \sin (\varphi)
\end{aligned}
$$

Since the set $B_{3}(0, r) \cap\{(0,0, z) \mid z \in \mathbb{R}\}$ is negligible, by the change of variables formula, we find (notice the absolute value)

$$
\int_{B_{3}(0, r)} d x d y d z=\int_{0}^{r} \int_{0}^{2 \pi} \int_{0}^{\pi} t^{2}|\sin (\varphi)| d t d \theta d \varphi=2 \pi\left[\frac{t^{3}}{3}\right]_{0}^{r} \int_{0}^{\frac{\pi}{2}} 2 \sin (\varphi) d \varphi=\frac{4 \pi}{3} r^{3}
$$

