de-CH
utf-8
math math-format
Matrix mit bestimmten Eigenvektor
ew-01-02
multiple
29120000
randRangeNonZero(-8,8) randRangeExclude(-8,8,[0,L1]) randRangeExclude(-8,8,[0,L1,L2]) randRangeNonZero(-8,8) L1 K * (L2-L1) randRange(-12,12) 0 L2 randRange(-12,12) 0 0 L3 K 1 0

Die Matrix A= \begin{pmatrix} A11 & A12 & A13 \\ A21 & {\color{red}b} & A23\\ A31 & A32 & A33 \end{pmatrix} hat v = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} als einen Eigenvektor.

Bestimmen Sie den Eintrag {\color{red}b}.

b \color{red} b = L2

Zu einem Eigenvektor v gibt es einen Eigenwert \color{orange}\lambda mit A \cdot v = {\color{orange}\lambda} \cdot v.

Suche also {\color{red}b}, sodass diese Gleichung erfüllt ist, das heisst, es gibt ein {\color{orange}\lambda} mit

\begin{pmatrix} A11 & A12 & A13 \\ A21 & {\color{red}b} & A23\\ A31 & A32 & A33 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = {\color{orange}\lambda} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}.

Rechnen auf der linken Seite gibt

\begin{pmatrix} A11 & A12 & A13 \\ A21 & {\color{red}b} & A23\\ A31 & A32 & A33 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} negParens(A11) \cdot negParens(X) + negParens(A12) \cdot negParens(Y) + negParens(A13) \cdot negParens(Z) \\ negParens(A21) \cdot negParens(X) + {\color{red}b} \cdot negParens(Y) + negParens(A23) \cdot negParens(Z) \\ negParens(A31) \cdot negParens(X) + negParens(A32) \cdot negParens(Y) + negParens(A33) \cdot negParens(Z) \end{pmatrix} = \begin{pmatrix} A11 * X + A12 * Y + A13 * Z \\ {\color{red}b} \\ 0 \end{pmatrix}= {\color{orange}L2} \cdot \begin{pmatrix} X \\ \dfrac{\color{red}b}{L2} \\ 0 \end{pmatrix}.

Mit {\color{red}b} = {\color{orange}\lambda} = {\color{orange}L2} ist die Gleichung A \cdot v = {\color{orange}\lambda} \cdot v oben erfüllt.

PS: Die Eigenwerte einer (oberen oder unteren) Dreiecksmatrix sind die Einträgen auf der Diagonalen, also hier wussten wir: schon {\color{orange}\lambda} \in \{A11, {\color{red}b}, A33\}.