de-CH
utf-8
math math-format
Matrix mit bestimmten EW
ew-01-02
multiple
1000000
randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) randRange(-12,12) L1+L2+L3+L4-A11-A22-A44

Bestimmen Sie den Eintrag {\color{red}b} in der Matrix \begin{pmatrix} A11 & A12 & A13 & A14 \\ A21 & A22 & A23 & A24 \\ A31 & A32 & {\color{red}b} & A34 \\ A41 & A42 & A43 & A44 \end{pmatrix},

sodass diese die Eigenwerte \color{blue} \lambda_1 = L1, \color{blue} \lambda_2 = L2 \color{blue} \lambda_3 = L3 und \color{blue} \lambda_4 = L4 hat.

b \color{red} b = A33

Die Summe der Eigenwerte ist gleich der Spur der Matrix.

Suche also {\color{red}b} mit negParens(A11) +negParens(A22) + {\color{red}b} + negParens(A44) = {\color{blue}negParens(L1) + negParens(L2) +negParens(L3) + negParens(L4) } = {\color{blue}L1 + L2 + L3 + L4}.

Auflösen nach {\color{red}b} liefert {\color{red}b} = A33.