de-CH
utf-8
math math-format
Matrix-Exponential berechnen
la-05-01
multiple
4096
randRangeNonZero(-8,8) randRangeNonZero(-8,8) A

Bestimmen Sie das Matrix-Exponenatial \color{red} e^{\color{blue}A} = \begin{pmatrix} E_{11} & E_{12}\\ E_{21} & E_{22} \end{pmatrix} der Matrix \color{blue} \begin{pmatrix} A & B\\ 0 & D \end{pmatrix} .

a \color{red} E_{11} = e^{A}
b \color{red} E_{12} = Be^{A}
c \color{red} E_{21} = 0
d \color{red} E_{22} = e^{D}

Schreibe {\color{blue} \begin{pmatrix} A & B\\ 0 & D \end{pmatrix}} = \underbrace{\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}}_{=B} + \underbrace{\begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}}_{= C} .

Es gilt BC = CB.

Wegen der Vertauschbarkeit folgt das Potenzgesetz e^A = e^{B+C} = e^B e^C.

Für die Diagonalmatrix B ist e^B = \begin{pmatrix} e^{A} & 0 \\ 0 & e^{D} \end{pmatrix} .

Für e^C schauen wir die Reihe an:

e^C = E_2 + C+ \frac 12 C^2 + \ldots = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}+ \frac 12 \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}^2 + \ldots \\ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}+ \frac 12 \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + (\text{nur noch Nullmatrizen}) = \begin{pmatrix} 1 & B \\ 0 & 1 \end{pmatrix}.

Damit ist e^A = e^{B+C} = e^B e^C = \begin{pmatrix} e^{A} & 0 \\ 0 & e^{D} \end{pmatrix} \begin{pmatrix} 1 & B \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} e^{A} & B e^{A} \\ 0 & e^{D}\end{pmatrix}.