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1 Revision of ODEs

Since the method of characteristics reduces PDEs to ODEs, we start with a quick review of the
ODEs that will be relevant for us.

1.1 Methods for solving first-order scalar ODEs

In this section we recall how to solve separable ODEs, which have the form

dx

dt
= f(x)g(t), (1)

and first-order linear ODEs, which have the form

dx

dt
+ f(t)x = g(t). (2)

Remark: It is not worth memorising the formulas. It is easier to simply derive them whenever
needed.

1.2 1st order, separable

Let I ⊆ R be an open interval containing 0 and let x ∈ C1(I) satisfy the separable ODE

ẋ(t) = f(x(t))g(t), t ∈ I,
x(0) = x0,

where f, g ∈ C1(R). Let h be a primitive of 1/f , i.e., let h satisfy ḣ(t) = 1/f(t). Assume that
f(x(t)) 6= 0 for all t ∈ I.

Since f(x(t)) 6= 0, we can divide the ODE by f(x(t)) to obtain

ẋ(t) = f(x(t))g(t) ⇐⇒ ẋ(t)

f(x(t))
= g(t)

⇐⇒
∫ t

0

ẋ(s)

f(x(s))
ds =

∫ t

0
g(s) ds

⇐⇒
∫ x(t)

x(0)

1

f(X)
dX =

∫ t

0
g(s) ds (change variables: X = x(s), dX = ẋ(s) ds)

⇐⇒
∫ x(t)

x(0)
ḣ(X) dX =

∫ t

0
g(s) ds

⇐⇒ h(x(t))− h(x(0)) =

∫ t

0
g(s) ds

⇐⇒ h(x(t)) = h(x0) +

∫ t

0
g(s) ds.



Observe that h′(x(t)) = 1/f(x(t)) > 0 by assumption. Therefore h is invertible in a neighbourhood
of x(t), and so the formula for the solution is given by

x(t) = h−1
(
h(x0) +

∫ t

0
g(s) ds

)
.

1.3 1st order, linear

Let x ∈ C1(R) satisfy the first-order linear ODE

ẋ(t) + a(t)x(t) = b(t), t ∈ R,
x(0) = x0,

where a, b ∈ C1(R). Let A be a primitive of a, i.e., let A satisfy Ȧ(t) = a(t). This is sometimes
denoted as A(t) =

∫
a(t) dt.

Multiplying the ODE by the integrating factor eA(t) gives

eAẋ+ eAax = eAb ⇐⇒ d

dt

(
eAx

)
= eAb

⇐⇒
∫ t

0

d

ds

(
eAx

)
ds =

∫ t

0
eA(s)b(s) ds

⇐⇒ eA(t)x(t)− eA(0)x(0) =

∫ t

0
eA(s)b(s) ds

⇐⇒ x(t) = eA(0)−A(t)x0 + e−A(t)
∫ t

0
eA(s)b(s) ds.

This provides the general formula for the solution.

Example 1 (Using an integrating factor) Solve the ODE

ẋ = λx,

x(0) = x0.

Here ẋ denotes the derivative dx/dt. We’ll treat this as a first-order linear ODE rather than as
a separable ODE, but either method works. This equation has the form of (2) with f(t) = −λ,
g(t) = 0. Multiplying the ODE by the integrating factor

exp

(∫
f(t) dt

)
= exp(−λt)

gives

e−λtẋ− λe−λtx = 0 ⇐⇒ d

dt

(
e−λtx

)
= 0.

Now we just integrate and use the Fundamental Theorem of Calculus:

0 =

∫ t

0

d

dt

(
e−λtx(t)

)
dt = e−λtx(t)− e−λ·0x(0) ⇐⇒ x(t) = x0e

λt.

We will often encounter ODEs of the form ẋ = λx and it is worth memorising the solution x(t) =
x(0)eλt; you should not need to derive it every time.
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Example 2 (Existence for only a finite time) Solve the ODE

ẋ = x2,

x(0) = 1.

Using the method of separation gives

ẋ = x2 ⇐⇒ 1

x2
ẋ = 1

⇐⇒
∫ t

0

1

x2(s)
ẋ(s) ds =

∫ t

0
1 ds

⇐⇒
∫ x(t)

x(0)

1

X2
dX = t (X = x(s), dX = ẋ(s) ds)

⇐⇒ − 1

X

∣∣∣∣x(t)
x(0)

= t

⇐⇒ − 1

x(t)
+ 1 = t

⇐⇒ x(t) =
1

1− t
.

The solution blows up at time t = 1: x(t)→∞ as t→ 1.
Even though the function x(t) = (1− t)−1 is defined for all t 6= 1, we say that ODE only has a

solution up until (and not including) time 1.

1.4 Linear second-order ODEs

Consider the second-order, linear, constant-coefficient ODE

d2x

dt2
+ c2x = 0.

This has solutions of the form
x(t) = A cos(ct) +B sin(ct),

where A,B are constants. On the other hand, the general solution to the ODE

d2x

dt2
− c2x = 0

is given by
x(t) = A sinh(ct) +B cosh(−ct),

where

sinh(t) =
et − e−t

2
, cosh(t) =

et + e−t

2
.

Note that sinh′(t) = cosh(t) and cosh′(t) = sinh(t).
Remark: the solution to the ODE

d2x

dt2
− c2x = 0

can also be written as
x(t) = C exp(ct) +D exp(−ct).

However, as we will see later, sinh and cosh are more convenient when imposing boundary condi-
tions, since sinh(0) = 0 and cosh′(0) = 0.
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2 An example of solution: The method of characteristics for a
linear PDE.

Solve the linear first-order PDE

ux + uy + u = 1 for (x, y) ∈ R2,

u = x2 for (x, y) ∈ R× {0}.

The PDE has the form

a1(x, y, u(x, y))ux(x, y) + a2(x, y, u(x, y))uy(x, y) = b(x, y, u(x, y))

with
a1(x, y, z) = 1, a2(x, y, z) = 1, b(x, y, z) = 1− z.

The value of u is prescribed on the line R×{0}, which we can parametrise by γ(s) = (x0(s), y0(s)) =
(s, 0), s ∈ R. Define

u0(s) = x20(s) = s2.

Hence the initial condition is given by

Γ = {(s, 0, s2) : s ∈ R}.

Step 1: We need to solve

d

dt
x = a(x, y, ũ) = 1, (3)

d

dt
y = b(x, y, ũ) = 1, (4)

d

dt
ũ = c(x, y, ũ) = 1− ũ, (5)

subject to the initial conditions

x(0, s) = x0(s) = s, (6)

y(0, s) = y0(s) = 0, (7)

ũ(0, s) = u0(s) = s2. (8)

Equations (3), (6) imply that
x(t, s) = t+ s.

Equations (4), (7) imply that
y(t, s) = t.

Multiply equation (5) by the integrating factor

exp

{∫
1 dt

}
= et

to obtain

etũt + etũ = et ⇐⇒ d

dt
(etũ) = et.
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Integrating from 0 to t gives

etũ(t, s)− e0ũ(0, s) =

∫ t

0
eτ dτ ⇐⇒ etũ(t, s)− s2 = et − 1 ⇐⇒ ũ(t, s) = 1 + e−t(s2 − 1).

Step 2: We need to invert the map (t, s) 7→ (x(t, s), y(t, s)) = (t+ s, t). Setting (x, y) = (t+ s, t)
and solving for t and s in terms of x and y gives t = y, s = x− t = x− y. Therefore

t(x, y) = y, s(x, y) = x− y.

Step 3: Finally,

u(x, y) = ũ(t(x, y), s(x, y)) = 1 + e−y((x− y)2 − 1)

It is easy to check that u satisfies the Cauchy problem.

Plotting the characteristics: The (projection of the) characteristics are the curves

t 7→ (x(t, s), y(t, s)) = (t+ s, t) = (s, 0) + t(1, 1),

which are in fact straight lines. We can write these lines in nonparametric form as y = x− s. Some
representative characteristics are plotted below.
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