Analysis III, 2019-2020, Prof. Dr. Mikaela Iacobelli
 Extra 2

1 Revision of ODEs

Since the method of characteristics reduces PDEs to ODEs, we start with a quick review of the ODEs that will be relevant for us.

1.1 Methods for solving first-order scalar ODEs

In this section we recall how to solve separable ODEs, which have the form

$$
\begin{equation*}
\frac{d x}{d t}=f(x) g(t) \tag{1}
\end{equation*}
$$

and first-order linear ODEs, which have the form

$$
\begin{equation*}
\frac{d x}{d t}+f(t) x=g(t) \tag{2}
\end{equation*}
$$

Remark: It is not worth memorising the formulas. It is easier to simply derive them whenever needed.

1.2 1st order, separable

Let $I \subseteq \mathbb{R}$ be an open interval containing 0 and let $x \in C^{1}(I)$ satisfy the separable ODE

$$
\begin{aligned}
& \dot{x}(t)=f(x(t)) g(t), \quad t \in I, \\
& x(0)=x_{0},
\end{aligned}
$$

where $f, g \in C^{1}(\mathbb{R})$. Let h be a primitive of $1 / f$, i.e., let h satisfy $\dot{h}(t)=1 / f(t)$. Assume that $f(x(t)) \neq 0$ for all $t \in I$.

Since $f(x(t)) \neq 0$, we can divide the ODE by $f(x(t))$ to obtain

$$
\begin{aligned}
\dot{x}(t)=f(x(t)) g(t) & \Longleftrightarrow \frac{\dot{x}(t)}{f(x(t))}=g(t) \\
& \Longleftrightarrow \int_{0}^{t} \frac{\dot{x}(s)}{f(x(s))} d s=\int_{0}^{t} g(s) d s \\
& \left.\Longleftrightarrow \int_{x(0)}^{x(t)} \frac{1}{f(X)} d X=\int_{0}^{t} g(s) d s \quad \text { (change variables: } X=x(s), d X=\dot{x}(s) d s\right) \\
& \Longleftrightarrow \int_{x(0)}^{x(t)} \dot{h}(X) d X=\int_{0}^{t} g(s) d s \\
& \Longleftrightarrow h(x(t))-h(x(0))=\int_{0}^{t} g(s) d s \\
& \Longleftrightarrow h(x(t))=h\left(x_{0}\right)+\int_{0}^{t} g(s) d s
\end{aligned}
$$

Observe that $h^{\prime}(x(t))=1 / f(x(t))>0$ by assumption. Therefore h is invertible in a neighbourhood of $x(t)$, and so the formula for the solution is given by

$$
x(t)=h^{-1}\left(h\left(x_{0}\right)+\int_{0}^{t} g(s) d s\right) .
$$

1.3 1st order, linear

Let $x \in C^{1}(\mathbb{R})$ satisfy the first-order linear ODE

$$
\begin{aligned}
\dot{x}(t)+a(t) x(t) & =b(t), \quad t \in \mathbb{R}, \\
x(0) & =x_{0},
\end{aligned}
$$

where $a, b \in C^{1}(\mathbb{R})$. Let A be a primitive of a, i.e., let A satisfy $\dot{A}(t)=a(t)$. This is sometimes denoted as $A(t)=\int a(t) d t$.

Multiplying the ODE by the integrating factor $e^{A(t)}$ gives

$$
\begin{aligned}
e^{A} \dot{x}+e^{A} a x=e^{A} b & \Longleftrightarrow \frac{d}{d t}\left(e^{A} x\right)=e^{A} b \\
& \Longleftrightarrow \int_{0}^{t} \frac{d}{d s}\left(e^{A} x\right) d s=\int_{0}^{t} e^{A(s)} b(s) d s \\
& \Longleftrightarrow e^{A(t)} x(t)-e^{A(0)} x(0)=\int_{0}^{t} e^{A(s)} b(s) d s \\
& \Longleftrightarrow x(t)=e^{A(0)-A(t)} x_{0}+e^{-A(t)} \int_{0}^{t} e^{A(s)} b(s) d s
\end{aligned}
$$

This provides the general formula for the solution.
Example 1 (Using an integrating factor) Solve the $O D E$

$$
\begin{aligned}
\dot{x} & =\lambda x, \\
x(0) & =x_{0} .
\end{aligned}
$$

Here \dot{x} denotes the derivative $d x / d t$. We'll treat this as a first-order linear ODE rather than as a separable $O D E$, but either method works. This equation has the form of (2) with $f(t)=-\lambda$, $g(t)=0$. Multiplying the ODE by the integrating factor

$$
\exp \left(\int f(t) d t\right)=\exp (-\lambda t)
$$

gives

$$
e^{-\lambda t} \dot{x}-\lambda e^{-\lambda t} x=0 \quad \Longleftrightarrow \quad \frac{d}{d t}\left(e^{-\lambda t} x\right)=0
$$

Now we just integrate and use the Fundamental Theorem of Calculus:

$$
0=\int_{0}^{t} \frac{d}{d t}\left(e^{-\lambda t} x(t)\right) d t=e^{-\lambda t} x(t)-e^{-\lambda \cdot 0} x(0) \quad \Longleftrightarrow \quad x(t)=x_{0} e^{\lambda t}
$$

We will often encounter ODEs of the form $\dot{x}=\lambda x$ and it is worth memorising the solution $x(t)=$ $x(0) e^{\lambda t}$; you should not need to derive it every time.

Example 2 (Existence for only a finite time) Solve the $O D E$

$$
\begin{aligned}
\dot{x} & =x^{2} \\
x(0) & =1
\end{aligned}
$$

Using the method of separation gives

$$
\begin{aligned}
\dot{x}=x^{2} & \Longleftrightarrow \frac{1}{x^{2}} \dot{x}=1 \\
& \Longleftrightarrow \int_{0}^{t} \frac{1}{x^{2}(s)} \dot{x}(s) d s=\int_{0}^{t} 1 d s \\
& \Longleftrightarrow \int_{x(0)}^{x(t)} \frac{1}{X^{2}} d X=t \quad(X=x(s), d X=\dot{x}(s) d s) \\
& \Longleftrightarrow-\left.\frac{1}{X}\right|_{x(0)} ^{x(t)}=t \\
& \Longleftrightarrow-\frac{1}{x(t)}+1=t \\
& \Longleftrightarrow x(t)=\frac{1}{1-t} .
\end{aligned}
$$

The solution blows up at time $t=1: x(t) \rightarrow \infty$ as $t \rightarrow 1$.
Even though the function $x(t)=(1-t)^{-1}$ is defined for all $t \neq 1$, we say that $O D E$ only has a solution up until (and not including) time 1.

1.4 Linear second-order ODEs

Consider the second-order, linear, constant-coefficient ODE

$$
\frac{d^{2} x}{d t^{2}}+c^{2} x=0
$$

This has solutions of the form

$$
x(t)=A \cos (c t)+B \sin (c t)
$$

where A, B are constants. On the other hand, the general solution to the ODE

$$
\frac{d^{2} x}{d t^{2}}-c^{2} x=0
$$

is given by

$$
x(t)=A \sinh (c t)+B \cosh (-c t),
$$

where

$$
\sinh (t)=\frac{e^{t}-e^{-t}}{2}, \quad \cosh (t)=\frac{e^{t}+e^{-t}}{2}
$$

Note that $\sinh ^{\prime}(t)=\cosh (t)$ and $\cosh ^{\prime}(t)=\sinh (t)$.
Remark: the solution to the ODE

$$
\frac{d^{2} x}{d t^{2}}-c^{2} x=0
$$

can also be written as

$$
x(t)=C \exp (c t)+D \exp (-c t)
$$

However, as we will see later, sinh and cosh are more convenient when imposing boundary conditions, since $\sinh (0)=0$ and $\cosh ^{\prime}(0)=0$.

2 An example of solution: The method of characteristics for a linear PDE.

Solve the linear first-order PDE

$$
\begin{aligned}
u_{x}+u_{y}+u=1 & \text { for }(x, y) \in \mathbb{R}^{2}, \\
u=x^{2} & \text { for }(x, y) \in \mathbb{R} \times\{0\} .
\end{aligned}
$$

The PDE has the form

$$
a_{1}(x, y, u(x, y)) u_{x}(x, y)+a_{2}(x, y, u(x, y)) u_{y}(x, y)=b(x, y, u(x, y))
$$

with

$$
a_{1}(x, y, z)=1, \quad a_{2}(x, y, z)=1, \quad b(x, y, z)=1-z
$$

The value of u is prescribed on the line $\mathbb{R} \times\{0\}$, which we can parametrise by $\gamma(s)=\left(x_{0}(s), y_{0}(s)\right)=$ $(s, 0), s \in \mathbb{R}$. Define

$$
u_{0}(s)=x_{0}^{2}(s)=s^{2}
$$

Hence the initial condition is given by

$$
\Gamma=\left\{\left(s, 0, s^{2}\right): s \in \mathbb{R}\right\}
$$

Step 1: We need to solve

$$
\begin{align*}
& \frac{d}{d t} x=a(x, y, \tilde{u})=1 \tag{3}\\
& \frac{d}{d t} y=b(x, y, \tilde{u})=1 \tag{4}\\
& \frac{d}{d t} \tilde{u}=c(x, y, \tilde{u})=1-\tilde{u} \tag{5}
\end{align*}
$$

subject to the initial conditions

$$
\begin{align*}
& x(0, s)=x_{0}(s)=s \tag{6}\\
& y(0, s)=y_{0}(s)=0 \tag{7}\\
& \tilde{u}(0, s)=u_{0}(s)=s^{2} \tag{8}
\end{align*}
$$

Equations (3), (6) imply that

$$
x(t, s)=t+s
$$

Equations (4), (7) imply that

$$
y(t, s)=t
$$

Multiply equation (5) by the integrating factor

$$
\exp \left\{\int 1 d t\right\}=e^{t}
$$

to obtain

$$
e^{t} \tilde{u}_{t}+e^{t} \tilde{u}=e^{t} \quad \Longleftrightarrow \quad \frac{d}{d t}\left(e^{t} \tilde{u}\right)=e^{t}
$$

Integrating from 0 to t gives

$$
e^{t} \tilde{u}(t, s)-e^{0} \tilde{u}(0, s)=\int_{0}^{t} e^{\tau} d \tau \quad \Longleftrightarrow \quad e^{t} \tilde{u}(t, s)-s^{2}=e^{t}-1 \quad \Longleftrightarrow \quad \tilde{u}(t, s)=1+e^{-t}\left(s^{2}-1\right)
$$

Step 2: We need to invert the map $(t, s) \mapsto(x(t, s), y(t, s))=(t+s, t)$. Setting $(x, y)=(t+s, t)$ and solving for t and s in terms of x and y gives $t=y, s=x-t=x-y$. Therefore

$$
t(x, y)=y, \quad s(x, y)=x-y
$$

Step 3: Finally,

$$
u(x, y)=\tilde{u}(t(x, y), s(x, y))=1+e^{-y}\left((x-y)^{2}-1\right)
$$

It is easy to check that u satisfies the Cauchy problem.
Plotting the characteristics: The (projection of the) characteristics are the curves

$$
t \mapsto(x(t, s), y(t, s))=(t+s, t)=(s, 0)+t(1,1)
$$

which are in fact straight lines. We can write these lines in nonparametric form as $y=x-s$. Some representative characteristics are plotted below.

