Prof. M. Einsiedler
Prof. P. Biran

Serie 3

1. Linear system. Using Gauss elimination, find all the solutions to the following system of linear equations over \mathbb{R} :

$$
\begin{cases}x+2 y+2 z+w & =-1 \\ 3 x+6 y+2 z+5 w & =1\end{cases}
$$

2. Fields. Consider the field $\mathbb{F}_{5}:=\mathbb{Z} / 5 \mathbb{Z}$. Its elements are $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}$, where \bar{n} denotes the residue class of n modulo $5 \mathbb{Z}$. Calculate:
(a) all pairs (x, y) satisfying $x+y=\overline{0}$;
(b) the elements $\frac{\overline{3}}{4}+\frac{\overline{1}}{3}$ in terms of $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}$;
(c) the value of $\overline{4}^{2022}$.
3. Fields. Prove that for any $a, b \in \mathbb{F}_{3}$,

$$
(a+b)^{3}=a^{3}+b^{3} .
$$

4. Linear System. Fix $b_{1}, b_{2}, b_{3} \in \mathbb{R}$. Determine when the following linear system of equations has a solution and describe its set of solutions $S \subseteq \mathbb{R}^{3}$ when it does

$$
\left(\begin{array}{ccc}
0 & 7 & -2 \\
-1 & 2 & -1 / 2 \\
4 & -1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

5. Fields. Let $(k,+, \cdot, 0,1)$ be a field and let $\alpha \in k$ such that $x^{2}=\alpha$ does not have any solutions in k. Let τ be a formal symbol outside of k such that $\tau^{2}=\alpha \in k$. Show that

$$
k[\tau]=\{a+b \tau \mid a, b \in k\}
$$

with the following operations

$$
\begin{array}{cccc}
+: & k[\tau] \times k[\tau] & \rightarrow & k[\tau] \\
& (a+b \tau, c+d \tau) & \mapsto & a+c+(b+d) \tau \\
& k[\tau] \times k[\tau] & \rightarrow & k[\tau] \\
& (a+b \tau, c+d \tau) & \mapsto & a c+\alpha b d+(b c+a d) \tau
\end{array}
$$

as its addition and multiplication, and equipped with $0+0 \tau$ as its 0 and $1+0 \tau$ as its 1 is a field.

Can you give explicit examples of this construction?
6. Fields. Let k be a finite field.
(a) Let S be the sum of all elements of k. Show that $S=0$ is satisfied if and only if k has more than two elements.
Hint: What are the properties of the map

$$
\begin{array}{rllc}
m_{b}: & k & \rightarrow & k \\
& x & \mapsto & b \cdot x
\end{array}
$$

for $b \in k^{*}=k \backslash\{0\}$?
(b) Let $M=\prod_{x \in k^{*}} x$ be the product of all non-zero Elements of k. Show that $M=-1$.
Hint: Consider the map $k^{*} \ni x \mapsto \frac{1}{x} \in k^{*}$.

