Serie 4

1. Let $m \in \mathbb{R}$. Describe the solutions of the following system of equations depending on m :

$$
\left\{\begin{array}{ccc}
x+m y & =-3 \\
m x+4 y & =6
\end{array}\right.
$$

When is the set of solutions S a linear subspace of \mathbb{R}^{2} ? Give a geometrical interpretation of S depending on m.
2. Which of the following sets are linear subspaces of the given vector spaces? What changes when \mathbb{R} is replaced by \mathbb{F}_{2} in (b) and (c)?
(a) $S_{1}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=x_{2}=2 x_{3}\right\} \subseteq \mathbb{R}^{3}$
(b) $S_{2}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{4}=0\right\} \subseteq \mathbb{R}^{2}$
(c) $S_{3}:=\left\{\left(\mu+\lambda, \lambda^{2}\right) \in \mathbb{R}^{2} \mid \mu, \lambda \in \mathbb{R}\right\} \subseteq \mathbb{R}^{2}$
3. Let K be a field in which $1+1 \neq 0$ and consider the space

$$
V=K^{K}=\operatorname{Abb}(K, K):=\{f: K \rightarrow K\} .
$$

Recall from the lectures that it is a vector space when endowed with scalar multiplication, namely $(\alpha \cdot f)(x)=\alpha f(x), \forall \alpha \in K, \forall x \in K$, and with point wise addition, i.e. $(f+g)(x)=f(x)+g(x), \forall x \in K$.
Now let

$$
\begin{aligned}
V_{\text {even }} & :=\{f: K \rightarrow K \mid f(-x)=f(x) \forall x \in K\}, \\
V_{\text {odd }} & :=\{f: K \rightarrow K \mid f(-x)=-f(x) \forall x \in K\} .
\end{aligned}
$$

Show that $V_{\text {even }}$ and $V_{\text {odd }}$ are linear subspaces of V, that

$$
V_{\text {even }}+V_{\text {odd }}:=\left\{v+w \mid v \in V_{\text {even }}, w \in V_{\text {odd }}\right\}=V
$$

and that $V_{\text {even }} \cap V_{\text {odd }}=\{0\}$.
4. Let ∞ and $-\infty$ denote 2 distinct objects, neither of which is in \mathbb{R}, Define an addition and a scalar multiplication on $V:=\mathbb{R} \cup\{\infty\} \cup\{-\infty\}$ as follows: in \mathbb{R}, addition and multiplication are defined as usual. For $t \in \mathbb{R}$ define

$$
t \infty=\left\{\begin{array}{cc}
-\infty & \text { if } t<0, \\
0 & \text { if } t=0, \\
\infty & \text { if } t>0,
\end{array} \quad t(-\infty)=\left\{\begin{array}{cl}
\infty & \text { if } t<0 \\
0 & \text { if } t=0 \\
-\infty & \text { if } t>0,
\end{array}\right.\right.
$$

$$
\begin{gathered}
t+\infty=\infty+t=\infty, \quad t+(-\infty)=(-\infty)+t=-\infty . \\
\infty+\infty=\infty, \quad(-\infty)+(-\infty)=(-\infty), \quad \infty+(-\infty)=(-\infty)+\infty=0 .
\end{gathered}
$$

Is V a vector space over \mathbb{R} ?
5. Let X be a set and let P be its power set (this means that P is the set of all subsets of X). For all $A, B \in P$ and for $\lambda \in \mathbb{F}_{2}$, define

$$
\begin{aligned}
A \triangle B & :=(A \cup B) \backslash(A \cap B) \\
\lambda \cdot A & := \begin{cases}\varnothing, & \text { for } \lambda=0, \\
A, & \text { for } \lambda=1 .\end{cases}
\end{aligned}
$$

Show that $(P, \triangle, \cdot, \varnothing)$ is a \mathbb{F}_{2}-vector space.
6. Let V be a K-vector space and let $V_{1}, V_{2} . V_{3} \subseteq V$ be linear subspaces, none of which is contained in another. Determine with proof if $V_{1} \cup V_{2} \cup V_{3}$ is always, sometimes or never a linear subspace of V.
Hint: Try different fields K to obtain examples.

Multiple Choice questions. Each question can admit several answers.
Question 1. Which of the following sets are linear subspaces of the given vector spaces?

- $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid 3 x_{1}+5 x_{2}+3 x_{3}=0,2 x_{2}+x_{3}=0\right\} \subseteq \mathbb{R}^{3}$

You saw in the lectures that sets of solutions of systems of homogeneous linear equations are linear subspaces.

- $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=3\right\} \subseteq \mathbb{R}^{3}$

It is not a linear subspace since $(0,0,0)$ is not in it.

- $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}>x_{2}\right\} \subseteq \mathbb{R}^{2}$

It is not a linear subspace since multiplying any element by a negative scalar λ reverses the inequality. Hence for any $\left(x_{1}, x_{2}\right)$ in the set, $\lambda\left(x_{1}, x_{2}\right)$ is not in the set anymore.

- $\{(0, x, 2 x, 3 x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^{4}$

It is a linear subspace since for any $v=(0, x, 2 x, 3 x), w=(0, y, 2 y, 3 y)$ in the set and any $\lambda \in \mathbb{R}$, we have

$$
v+\lambda w=(0, x+\lambda y, 2 x+2 \lambda y, 3 x+3 \lambda y)=(0, z, 2 z, 3 z),
$$

for $z=x+\lambda y$. Hence $v+\lambda w$ stays in the set.

- $\left\{\left(x^{4}, x^{3}, x^{2}, x\right) \mid x \in \mathbb{R}\right\} \subseteq \mathbb{R}^{4}$

It is not a linear subspace. Note that $v:=(1,1,1,1)$ lies in this set but that $2 v$ does not since there is no $x \in \mathbb{R}$ such that $2=x^{4}=x^{3}=x^{2}=x$.

Question 2. Consider the set of pairs of positive real numbers \mathbb{R}_{+}^{2}. The addition on \mathbb{R}_{+}^{2} is defined as follows:

$$
\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}:=\binom{x_{1} y_{1}}{x_{2} y_{2}} .
$$

We now consider three different definitions of scalar multiplication, for a $\lambda \in \mathbb{R}$:

- $\lambda\binom{x_{1}}{x_{2}}:=\binom{\lambda x_{1}}{\lambda x_{2}}$
- $\lambda\binom{x_{1}}{x_{2}}:=\binom{e^{\lambda} x_{1}}{e^{\lambda} x_{2}}$
- $\lambda\binom{x_{1}}{x_{2}}:=\binom{x_{1}^{\lambda}}{x_{2}^{\lambda}}$

According to which definition of scalar multiplication does \mathbb{R}_{+}^{2} with the addition defined above become a \mathbb{R}-vector space?

- First definition

No. If $\lambda<0$ then $\lambda\binom{x_{1}}{x_{2}} \notin \mathbb{R}_{+}^{2}$

- Second definition

No. Distributivity $\lambda(v+w)=\lambda v+\lambda w$ is not verified.

- Third definition

It checks all of the axioms.

