Lineare Algebra I

Serie 5

1. Polynomials. Consider the polynomials

$$p_1(x) = x^3 + x^2$$

$$p_2(x) = x^2 - 2x - 4$$

$$p_3(x) = 3x + 4$$

$$p_4(x) = 2x + 3$$

- (a) Express the polynomial $2x^3 + 3x^2 1$ as a linear combination of the p_i , i =1, 2, 3, 4.
- (b) Calculate the linear span $\text{Sp}(p_1, p_2, p_3, p_4)$.
- 2. Dimension 2. Let $v \in \mathbb{R}^2 \setminus \{(0,0)\}$ and let $w \in \mathbb{R}^2 \setminus \{(0,0)\}$ be such that $w \neq \alpha v$ for all $\alpha \in \mathbb{R}$.
 - (a) Show that $\operatorname{Sp}(v, w) = \mathbb{R}^2$.
 - (b) Show that the only subspaces of \mathbb{R}^2 are $\{(0,0)\}$, $\operatorname{Sp}(v)$ for all $v \in \mathbb{R}^2$, and \mathbb{R}^2 .
- 3. Subvectorspaces. Do the operations + and \cap on subvectorspaces satisfy distributivity? In other words, do the following equations hold for all linear subspaces?

$$U \cap (V_1 + V_2) = (U \cap V_1) + (U \cap V_2)$$
$$U + (V_1 \cap V_2) = (U + V_1) \cap (U + V_2)$$

If not, is at least one inclusion satisfied?

Recall that for two subspaces V_1 and V_2 of a vector space V,

$$V_1 + V_2 = \{ u + v \mid u \in V_1, v \in V_2 \}.$$

4. Subspaces and equations. Let K be a field. Fix $x \in K^n$ and $b \in K^m$. Define

$$U := \{ A \in M_{m \times n}(K) \mid A \cdot x = b \}.$$

For which values of x and b is $U \subseteq M_{m \times n}(K)$ a linear subspace?

5. Polynomials. Prove that K[x] is *not* finite-dimensional over K.

6. Sequences.

(a) Let K_0^{∞} be the set of finitely-supported sequences, i.e.

$$K_0^{\infty} = \{ (a_0, a_1, a_2, \dots, a_n, \dots) \mid \forall i \in \mathbb{N} \ a_i \in K \land \exists N \ge 0 \text{ s.t. } a_n = 0 \ \forall n \ge N \}.$$

Write the smallest (with respect to inclusion) generating subset $E \subsetneq K_0^{\infty}$ that you can think of and justify your answer.

(b) Do the same for

$$K_{cst}^{\infty} := \{ (a_0, a_1, a_2, \dots, a_n, \dots) \mid \forall i \in \mathbb{N} \ a_i \in K \land \exists c \in K \exists N \ge 0 : a_n = c \ \forall n \ge N \},\$$

the set of eventually constant sequences.