Serie 5

1. Polynomials. Consider the polynomials

$$
\begin{aligned}
& p_{1}(x)=x^{3}+x^{2} \\
& p_{2}(x)=x^{2}-2 x-4 \\
& p_{3}(x)=3 x+4 \\
& p_{4}(x)=2 x+3
\end{aligned}
$$

(a) Express the polynomial $2 x^{3}+3 x^{2}-1$ as a linear combination of the $p_{i}, i=$ $1,2,3,4$.
(b) Calculate the linear $\operatorname{span} \operatorname{Sp}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$.
2. Dimension 2. Let $v \in \mathbb{R}^{2} \backslash\{(0,0)\}$ and let $w \in \mathbb{R}^{2} \backslash\{(0,0)\}$ be such that $w \neq \alpha v$ for all $\alpha \in \mathbb{R}$.
(a) Show that $\operatorname{Sp}(v, w)=\mathbb{R}^{2}$.
(b) Show that the only subspaces of \mathbb{R}^{2} are $\{(0,0)\}, \operatorname{Sp}(v)$ for all $v \in \mathbb{R}^{2}$, and \mathbb{R}^{2}.
3. Subvectorspaces. Do the operations + and \cap on subvectorspaces satisfy distributivity? In other words, do the following equations hold for all linear subspaces?

$$
\begin{aligned}
& U \cap\left(V_{1}+V_{2}\right)=\left(U \cap V_{1}\right)+\left(U \cap V_{2}\right) \\
& U+\left(V_{1} \cap V_{2}\right)=\left(U+V_{1}\right) \cap\left(U+V_{2}\right)
\end{aligned}
$$

If not, is at least one inclusion satisfied?
Recall that for two subspaces V_{1} and V_{2} of a vector space V,

$$
V_{1}+V_{2}=\left\{u+v \mid u \in V_{1}, v \in V_{2}\right\} .
$$

4. Subspaces and equations. Let K be a field. Fix $x \in K^{n}$ and $b \in K^{m}$. Define

$$
U:=\left\{A \in M_{m \times n}(K) \mid A \cdot x=b\right\} .
$$

For which values of x and b is $U \subseteq M_{m \times n}(K)$ a linear subspace?
5. Polynomials. Prove that $K[x]$ is not finite-dimensional over K.

6. Sequences.

(a) Let K_{0}^{∞} be the set of finitely-supported sequences, i.e.

$$
K_{0}^{\infty}=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right) \mid \forall i \in \mathbb{N} a_{i} \in K \wedge \exists N \geqslant 0 \text { s.t. } a_{n}=0 \forall n \geqslant N\right\} .
$$

Write the smallest (with respect to inclusion) generating subset $E \subsetneq K_{0}^{\infty}$ that you can think of and justify your answer.
(b) Do the same for
$K_{\text {cst }}^{\infty}:=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right) \mid \forall i \in \mathbb{N} a_{i} \in K \wedge \exists c \in K \exists N \geqslant 0: a_{n}=c \forall n \geqslant N\right\}$, the set of eventually constant sequences.

