Serie 6

1. For each of the following sets, prove whether or not they are linearly independent over \mathbb{R} :

$$S_{1} = \left\{ \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\-3\\9 \end{pmatrix}, \begin{pmatrix} 1\\3\\-4\\7 \end{pmatrix}, \begin{pmatrix} 2\\0\\1\\3 \end{pmatrix} \right\}, \\S_{2} = \left\{ \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix} \right\}.$$

- 2. Are the following sets linearly independent over \mathbb{R} ?
 - (a) $\{(1,0,0), (0,2,t), (2,4,t^2)\}$ for t in \mathbb{R} ;
 - (b) The set of columns of an upper triangular matrix $A \in M_{n \times n}(\mathbb{R})$ with $A_{ii} \neq 0$ for all $1 \leq i \leq n$. We define an upper triangular matrix to be a matrix whose entries under the diagonal all vanish, i.e. a matrix $A = (A_{ij})_{1 \leq i,j \leq n}$ such that $A_{ij} = 0$ whenever j < i.
 - (c) $\{f, g\} \subseteq Abb(\mathbb{R}, \mathbb{R})$, where $f(x) = \sin(x)$ and $g(x) = \cos(x)$;
 - (d) $\{f, g\} \subseteq Abb(\mathbb{R}, \mathbb{R})$, where $f(x) = e^{rx}$ and $g(x) = e^{sx}$, for fixed $s, r \in \mathbb{R}$.
- 3. Consider $A_1, A_2 \in M_{2 \times 3}(\mathbb{R})$, given by

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Show that $\{A_1, A_2\}$ is linearly independent over \mathbb{R} .
- (b) Let

$$M := \left\{ \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \in M_{2 \times 3}(\mathbb{R}) \mid d = e = 0, b - a = f, 3a = c \right\}$$

Prove that $Sp(A_1, A_2) = M$.

(c) Find $A_3 \in M_{2\times 3}(\mathbb{R})$ such that $\{A_1, A_2, A_3\}$ is linearly independent. Is $\text{Sp}(A_1, A_2, A_3) = M_{2\times 3}(\mathbb{R})$ for any choice of such an A_3 ?

4. Show that

$$U = \{ f \in \operatorname{Abb}(\mathbb{F}_5, \mathbb{F}_5) \mid \sum_{i=0}^4 f(\overline{i}) = 0 \} \subseteq \operatorname{Abb}(\mathbb{F}_5, \mathbb{F}_5)$$

is a linear subspace. Determine a basis of U.

- 5. Let V be a vector space over some field K that admits a countable basis. Show that every linearly independent subset $S \subseteq V$ is finite or countable.
- 6. Prove that the functions

$$\varphi_a : \mathbb{R}_{>0} \to \mathbb{R}, \quad x \mapsto \frac{1}{a+x}$$

for all $a \in \mathbb{R}_{\geq 0}$ are linear independent.

Hint: Use that a non-zero polynomial only has finitely many zeros.

Multiple Choice questions. Each question can admit several answers.

Question 1. Let V be a vector space over K. Which of the following assertions is true ?

• Let $v \in V$, then the set

$$W := \{ w \in V \mid \exists \lambda \in K : w = \lambda v \}$$

is a linear subspace of V.

- A subset $W \subset V$ is a linear subspace if and only if Sp(W) = W.
- Let $S_1, S_2 \subset V$ be subsets. Then $\operatorname{Sp}(S_1 \cup S_2) = \operatorname{Sp}(S_1) + \operatorname{Sp}(S_2)$.
- Let $S_1, S_2 \subset V$ be subsets. Then $\operatorname{Sp}(S_1 \cap S_2) \subseteq \operatorname{Sp}(S_1) \cap \operatorname{Sp}(S_2)$.

Question 2. Let V be a vector space and let $S_1, S_2 \subseteq V$ with $S_1 \subsetneq S_2$. Which of the following are true?

- (a) If S_1 is a linearly independent set, when is S_2 a linearly independent set?
 - Always
 - \circ Never
 - \circ Sometimes

If now S_2 is a linearly independent set, when is S_1 a linearly independent set?

- Always
- \circ Never
- \circ Sometimes
- (b) Answer the previous question, replacing "linearly independent set" with "generating set for V".
- (c) Answer question (a), replacing "linearly independent set" with "basis for V".