Serie 6

1. For each of the following sets, prove whether or not they are linearly independent over \mathbb{R} :

$$
\begin{aligned}
& S_{1}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
2 \\
3 \\
-3 \\
9
\end{array}\right),\left(\begin{array}{c}
1 \\
3 \\
-4 \\
7
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
1 \\
3
\end{array}\right)\right\}, \\
& S_{2}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)\right\} .
\end{aligned}
$$

2. Are the following sets linearly independent over \mathbb{R} ?
(a) $\left\{(1,0,0),(0,2, t),\left(2,4, t^{2}\right)\right\}$ for t in \mathbb{R};
(b) The set of columns of an upper triangular matrix $A \in M_{n \times n}(\mathbb{R})$ with $A_{i i} \neq 0$ for all $1 \leqslant i \leqslant n$. We define an upper triangular matrix to be a matrix whose entries under the diagonal all vanish, i.e. a matrix $A=\left(A_{i j}\right)_{1 \leqslant i, j \leqslant n}$ such that $A_{i j}=0$ whenever $j<i$.
(c) $\{f, g\} \subseteq \operatorname{Abb}(\mathbb{R}, \mathbb{R})$, where $f(x)=\sin (x)$ and $g(x)=\cos (x)$;
(d) $\{f, g\} \subseteq \operatorname{Abb}(\mathbb{R}, \mathbb{R})$, where $f(x)=e^{r x}$ and $g(x)=e^{s x}$, for fixed $s, r \in \mathbb{R}$.
3. Consider $A_{1}, A_{2} \in M_{2 \times 3}(\mathbb{R})$, given by

$$
A_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Show that $\left\{A_{1}, A_{2}\right\}$ is linearly independent over \mathbb{R}.
(b) Let

$$
M:=\left\{\left.\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \in M_{2 \times 3}(\mathbb{R}) \right\rvert\, d=e=0, b-a=f, 3 a=c\right\}
$$

Prove that $\operatorname{Sp}\left(A_{1}, A_{2}\right)=M$.
(c) Find $A_{3} \in M_{2 \times 3}(\mathbb{R})$ such that $\left\{A_{1}, A_{2}, A_{3}\right\}$ is linearly independent. $\operatorname{Is} \operatorname{Sp}\left(A_{1}, A_{2}, A_{3}\right)=$ $M_{2 \times 3}(\mathbb{R})$ for any choice of such an A_{3} ?
4. Show that

$$
U=\left\{f \in \operatorname{Abb}\left(\mathbb{F}_{5}, \mathbb{F}_{5}\right) \mid \sum_{i=0}^{4} f(\bar{i})=0\right\} \subseteq \operatorname{Abb}\left(\mathbb{F}_{5}, \mathbb{F}_{5}\right)
$$

is a linear subspace. Determine a basis of U.
5. Let V be a vector space over some field K that admits a countable basis. Show that every linearly independent subset $S \subseteq V$ is finite or countable.
6. Prove that the functions

$$
\varphi_{a}: \mathbb{R}_{>0} \rightarrow \mathbb{R}, \quad x \mapsto \frac{1}{a+x}
$$

for all $a \in \mathbb{R}_{\geqslant 0}$ are linear independent.
Hint: Use that a non-zero polynomial only has finitely many zeros.

Multiple Choice questions. Each question can admit several answers.
Question 1. Let V be a vector space over K. Which of the following assertions is true?

- Let $v \in V$, then the set

$$
W:=\{w \in V \mid \exists \lambda \in K: w=\lambda v\}
$$

is a linear subspace of V.

- A subset $W \subset V$ is a linear subspace if and only if $\operatorname{Sp}(W)=W$.
- Let $S_{1}, S_{2} \subset V$ be subsets. Then $\operatorname{Sp}\left(S_{1} \cup S_{2}\right)=\operatorname{Sp}\left(S_{1}\right)+\operatorname{Sp}\left(S_{2}\right)$.
- Let $S_{1}, S_{2} \subset V$ be subsets. Then $\operatorname{Sp}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Sp}\left(S_{1}\right) \cap \operatorname{Sp}\left(S_{2}\right)$.

Question 2. Let V be a vector space and let $S_{1}, S_{2} \subseteq V$ with $S_{1} \subsetneq S_{2}$. Which of the following are true?
(a) If S_{1} is a linearly independent set, when is S_{2} a linearly independent set?

- Always
- Never
- Sometimes

If now S_{2} is a linearly independent set, when is S_{1} a linearly independent set?

- Always
- Never
- Sometimes
(b) Answer the previous question, replacing "linearly independent set" with "generating set for V ".
(c) Answer question (a), replacing "linearly independent set" with "basis for V ".

