Serie 7

1. Compute the dimension and find a basis of the following spaces
(a) The space of upper triangular matrices in $M_{n \times n}(\mathbb{R})$ over \mathbb{R} (for a definition, see Serie 6, exercise 2.b));
(b) The space of diagonal matrices in $M_{n \times n}(\mathbb{R})$ over \mathbb{R}, where diagonal matrices are all matrices $A=\left(a_{i j}\right)$ such that $a_{i j}=0$ whenever $i \neq j$;
(c) The space of symmetric matrices

$$
W=\left\{A \in M_{n \times n}(\mathbb{R}) \mid A^{T}=A\right\}
$$

where ${ }^{T}$ denotes the operation $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n} \mapsto\left(a_{j i}\right)_{1 \leqslant i, j \leqslant n}$;
(d) The space of matrices $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$ such that the sum of the columns of A is the null vector.
2. Let W be the linear subspace generated by the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right), v_{2}=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
4 \\
2 \\
3
\end{array}\right), v_{4}=\left(\begin{array}{l}
0 \\
2 \\
1 \\
1
\end{array}\right)
$$

(a) Determine a system of equations whose solution is W.
(b) Find all the possible bases of W that can be built using $v_{1}, v_{2}, v_{3}, v_{4}$. How many are there?
3. Determine a basis and the dimension of the following spaces:
(a) The set of solutions $S \subseteq \mathbb{R}^{3}$ of

$$
\begin{array}{r}
x+y-z=0 \\
3 x+y+2 z=0 \\
2 x+3 z=0
\end{array}
$$

(b) $\{0\}$;
(c) $\left\{(z, w) \in \mathbb{C}^{2} \mid z+i w=0\right\}$ as a vector space over \mathbb{C};
(d) $\left\{(z, w) \in \mathbb{C}^{2} \mid z+i w=0\right\}$ as a vector space over \mathbb{R}.
4. Let K be a field, fix $g(X):=X+5 \in K[X]$, and let $d \geqslant 1$. Compute the dimension of the space

$$
W=\{h \in K[X] \mid \operatorname{deg}(h) \leqslant d \wedge \exists f \in K[X]: h=g f\} .
$$

5. Consider the following subspace of K^{n} :

$$
\begin{aligned}
& U:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K^{n} \mid \sum_{i=1}^{n} \alpha_{i}=0\right\}, \\
& D:=\left\{(\alpha, \ldots, \alpha) \in K^{n} \mid \alpha \in K\right\} .
\end{aligned}
$$

Determine a basis and compute the dimension of $U, D, U \cap D$, and $U+D$.
Remark: Do not forget to consider the case where K is a field such that $n \cdot 1=0$.
6. Determine a basis and compute the dimension of the space

$$
\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is continuous } \wedge\left(f+f^{\prime \prime}=0\right)\right\} .
$$

Hint: Note that f, f^{\prime}, and $f^{\prime \prime}$ exist and are continuous. Moreover, you can use the following result from Analysis: the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x \in \mathbb{R}: f(x)=0$ is the unique continuous solution to

$$
\left\{\begin{array}{rlc}
f+f^{\prime \prime} & = & 0 \\
f(0) & = & f^{\prime}(0)=0
\end{array}\right.
$$

