Serie 8

1. Let F be a field. Find a linear complement of the following subspaces in $M_{n \times n}(F)$ (see Serie 7 for definitions):
(a) The subspace of upper triangular matrices;
(b) The subspace of symmetric matrices.
2. Let $b, c \in \mathbb{R}$ and let $\mathbb{R}[x]$ denote the space of polynomial functions of 1 variable with coefficients in \mathbb{R}. Define $T: \mathbb{R}[x] \rightarrow \mathbb{R}^{2}$ by

$$
T p=\left(3 p(4)+5 p^{\prime}(6)+b p(1) p(2), \int_{-1}^{2} x^{3} p(x) d x+c p(0)^{2}\right) .
$$

Show that T is linear if and only if $b=c=0$.
3. Suppose that U and V are both 4 -dimensional subspaces of \mathbb{C}^{6}. Prove that there exists 2 vectors in $U \cap V$ such that neither of these vectors is a scalar multiple of the other.
4. Suppose that $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent in V and let $w \in V$. Prove that

$$
\operatorname{dim} \operatorname{Sp}\left(v_{1}+w, v_{2}+w, \ldots, v_{m}+w\right) \geqslant m-1
$$

5. Let V be a vector space over a field F and consider 3 linear subspaces U_{1}, U_{2}, U_{3} such that $V=U_{1}+U_{2}+U_{3}$ and for $i, j \in\{1,2,3\}$ such that $i \neq j$, we have $U_{i} \cap U_{j}=\{0\}$.
Is it true that for any $v \in U_{1}+U_{2}+U_{3}$ there exists a unique triple $\left(u_{1}, u_{2}, u_{3}\right)$ with $u_{i} \in U_{i}$ such that $v=u_{1}+u_{2}+u_{3}$?
6. Let V be a finite-dimensional vector space over a field F and let

$$
V \supseteq U_{0} \supseteq U_{1} \supseteq U_{2} \supseteq \cdots \supseteq U_{k} \supseteq \cdots
$$

be an infinite sequence of nested subspaces.
(a) Show that this sequence stabilises, i.e. show that there exists a $N \in \mathbb{N}$ such that for all $n \geqslant N: U_{n}=U_{N}$.
(b) Is this still the case if we now assume that V is infinite-dimensional?
(c) Assume that V is infinite-dimensional and that $\operatorname{dim} U_{n} \geqslant 1$ for all $n \in \mathbb{N}$. What can you say about $\bigcap_{n \in \mathbb{N}} U_{n}$?

Multiple Choice Fragen. More than one answer can be correct.
Frage 1. Which of the following maps are linar?

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(x+y, 2 x, 0)$
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(x+y, 2 x, 0)$
- $f: K^{3} \rightarrow K^{2},(x, y, z) \mapsto(\alpha x+\beta y+\gamma z, \delta x+\varepsilon y+\eta z)$ for fixed $\alpha, \beta, \gamma, \delta, \varepsilon, \eta$ in the field K

Frage 2. Which of the linear maps below can be written as $x \mapsto A x$, where A is the matrix

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 0 \\
0 & 2
\end{array}\right)
$$

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(x, y)=(2 x+y, x, 2 y)$
- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(x, y, z)=(2 x+y, x+2 z)$

