Serie 9

1. Show that if V is a one-dimensional vector space over a field K and $T \in \operatorname{Hom}_{K}(V, V)$, then there exists $\lambda \in K$ such that for all $v \in V: T v=\lambda v$. Explain then why an isomorphism $V \rightarrow K$ depends on a choice of basis, while one from $\operatorname{Hom}_{K}(V, V)$ to K doesn't.
2. Denote $\mathbb{R}[x]_{d}$ the set of polynomials over \mathbb{R} of degree lower or equal to d. Suppose that $D \in \operatorname{Hom}_{\mathbb{R}}\left(\mathbb{R}[x]_{3}, \mathbb{R}[x]_{2}\right)$ is the differentiation map $D p=p^{\prime}$. Find a basis of $\mathbb{R}[x]_{3}$ and a basis of $\mathbb{R}[x]_{2}$ such that the matrix of D with respect to these bases is

$$
\left(\begin{array}{cccc}
0 & 1 & -1 & -1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

3. Let V, W be vector spaces over a field K. Suppose that $U \subsetneq V$ is a linear subspace and let S be a non-trivial element of $\operatorname{Hom}_{K}(U, W)$ (i.e. we assume that S does not map everything to 0). Define $T: V \rightarrow W$ by

$$
T v=\left\{\begin{aligned}
S v, & \text { if } v \in U \\
0, & \text { if } v \in V \backslash U
\end{aligned}\right.
$$

Is T a linear map?
4. Let U, V, W be vector spaces over a field K and let $T: V \rightarrow W$ and $S: W \rightarrow U$ be linear maps.
(a) Prove that

$$
\operatorname{rank}(S \circ T) \leqslant \min (\operatorname{rank}(S), \operatorname{rank}(T))
$$

(b) Show that $\operatorname{rank}(S \circ T)=\operatorname{rank}(S)$ whenever T is surjective.
(c) Show that $\operatorname{rank}(S \circ T)=\operatorname{rank}(T)$ whenever S is injective.
5. Let V be a vector space. An Endomorphism $P: V \rightarrow V$ satisfying $P^{2}:=P \circ P=P$ is called idempotent or a projection. Show:
(a) For ever projection P, its image $\Im(P)$ is a linear complement of $\operatorname{Kern}(P)$ in V.
(b) For any subvectorspaces $W_{1}, W_{2} \subset V$, such that W_{1} is a complement of W_{2} in V, there exists a unique projection $P: V \rightarrow V$ with

$$
\operatorname{Kern}(P)=W_{1} \quad \text { und } \quad \operatorname{Bild}(P)=W_{2}
$$

6. Let $f: V \rightarrow W$ be a linear map of K-vector spaces. Show:
(a) For every subvectorspace $W^{\prime} \subset W$ the preimage

$$
f^{-1}\left(W^{\prime}\right):=\left\{v \in V \mid f(v) \in W^{\prime}\right\}
$$

is a subvectorspace of V.
(b) We have

$$
\operatorname{dim} f^{-1}\left(W^{\prime}\right)=\operatorname{dim} \operatorname{Kern}(f)+\operatorname{dim}\left(\operatorname{Bild}(f) \cap W^{\prime}\right)
$$

Exercises that will not be presented

7. Let V, W be vector spaces over a field K and let $T: V \rightarrow W$ be an isomorphism of vector spaces. Show that:
(a) T maps linearly independent sets to linearly independent sets;
(b) T maps spanning sets of V to spanning sets of W;
(c) T maps bases to bases.
8. Let V, W be vector spaces over \mathbb{Q}. We say that a map $f: V \rightarrow W$ is additive, if

$$
\forall x \in V \forall y \in V: f(x+y)=f(x)+f(y)
$$

Show that

$$
\operatorname{Hom}_{\mathbb{Q}}(V, W)=\{f: V \rightarrow W \mid f \text { is additive }\} .
$$

Multiple Choice Questions. More than one answer can be correct.
Question 1. Let \mathcal{A} and \mathcal{B} be bases of \mathbb{R}^{2} and denote $\left\{e_{1}, e_{2}\right\}$ the standard basis. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given by the matrix

$$
M=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

with respect to \mathcal{A} as a basis of the domain and \mathcal{B} as a basis of the codomain. Which of the following statements are true?

- If $\mathcal{A}=\mathcal{B}=\left\{e_{1}, e_{2}\right\}, f$ is a rotation around the origin.
- If \mathcal{A} is the standard basis and $\mathcal{B}=\left\{e_{2},-e_{1}\right\}, f$ is a symmetry with respect ot the point $(0,0)$.
- If \mathcal{A} is the standard basis and f is the identity, then $\mathcal{B}=\left\{-e_{2}, e_{1}\right\}$.
- If \mathcal{B} id the standard basis and f is the symmetry with respect to the y-axis, then $A=\left\{e_{2}, e_{1}\right\}$.

Question 2. Which of the following statements are true?

- Let V be an n-dimensional vector space over \mathbb{R}. The map $V \rightarrow \mathbb{R}^{n}, v \mapsto[v]_{\mathcal{B}}$, that sends any vector $v \in V$ to its coordinate vector with respect to a basis \mathcal{B} of \mathbb{R}^{n} is linear.
- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear with $\operatorname{Kern}(f) \neq\{0\}$ and $\operatorname{Bild}(f) \neq\{0\}$. Then there exists a non-trivial vector v that is in the kernel and in the image of f.
- If the kernel of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is trivial, the map is invertible.

