Serie 9

- 1. Show that if V is a one-dimensional vector space over a field K and $T \in \operatorname{Hom}_{K}(V, V)$, then there exists $\lambda \in K$ such that for all $v \in V : Tv = \lambda v$. Explain then why an isomorphism $V \to K$ depends on a choice of basis, while one from $\operatorname{Hom}_{K}(V, V)$ to K doesn't.
- 2. Denote $\mathbb{R}[x]_d$ the set of polynomials over \mathbb{R} of degree lower or equal to d. Suppose that $D \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}[x]_3, \mathbb{R}[x]_2)$ is the differentiation map Dp = p'. Find a basis of $\mathbb{R}[x]_3$ and a basis of $\mathbb{R}[x]_2$ such that the matrix of D with respect to these bases is

/0	1	-1	-1
0	0	2	-1
$\sqrt{0}$	0	0	3 /

3. Let V, W be vector spaces over a field K. Suppose that $U \subsetneq V$ is a linear subspace and let S be a non-trivial element of $\operatorname{Hom}_K(U, W)$ (i.e. we assume that S does not map everything to 0). Define $T: V \to W$ by

$$Tv = \begin{cases} Sv, & \text{if } v \in U \\ 0, & \text{if } v \in V \smallsetminus U \end{cases}$$

Is T a linear map?

- 4. Let U, V, W be vector spaces over a field K and let $T : V \to W$ and $S : W \to U$ be linear maps.
 - (a) Prove that

 $\operatorname{rank}(S \circ T) \leq \min(\operatorname{rank}(S), \operatorname{rank}(T)).$

- (b) Show that $\operatorname{rank}(S \circ T) = \operatorname{rank}(S)$ whenever T is surjective.
- (c) Show that $\operatorname{rank}(S \circ T) = \operatorname{rank}(T)$ whenever S is injective.
- 5. Let V be a vector space. An Endomorphism $P: V \to V$ satisfying $P^2 := P \circ P = P$ is called idempotent or a projection. Show:
 - (a) For ever projection P, its image $\Im(P)$ is a linear complement of Kern(P) in V.
 - (b) For any subvectorspaces $W_1, W_2 \subset V$, such that W_1 is a complement of W_2 in V, there exists a unique projection $P: V \to V$ with

$$\operatorname{Kern}(P) = W_1 \quad \text{und} \quad \operatorname{Bild}(P) = W_2.$$

- 6. Let $f: V \to W$ be a linear map of K-vector spaces. Show:
 - (a) For every subvectorspace $W' \subset W$ the preimage

$$f^{-1}(W') := \{ v \in V \mid f(v) \in W' \}$$

is a subvector space of V.

(b) We have

$$\dim f^{-1}(W') = \dim \operatorname{Kern}(f) + \dim \left(\operatorname{Bild}(f) \cap W'\right).$$

Exercises that will not be presented

- 7. Let V, W be vector spaces over a field K and let $T: V \to W$ be an isomorphism of vector spaces. Show that:
 - (a) T maps linearly independent sets to linearly independent sets;
 - (b) T maps spanning sets of V to spanning sets of W;
 - (c) T maps bases to bases.
- 8. Let V, W be vector spaces over \mathbb{Q} . We say that a map $f: V \to W$ is additive, if

$$\forall x \in V \,\forall y \in V : f(x+y) = f(x) + f(y).$$

Show that

$$\operatorname{Hom}_{\mathbb{Q}}(V, W) = \{ f : V \to W \mid f \text{ is additive} \}.$$

Multiple Choice Questions. More than one answer can be correct.

Question 1. Let \mathcal{A} and \mathcal{B} be bases of \mathbb{R}^2 and denote $\{e_1, e_2\}$ the standard basis. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given by the matrix

$$M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

with respect to \mathcal{A} as a basis of the domain and \mathcal{B} as a basis of the codomain. Which of the following statements are true?

- If $\mathcal{A} = \mathcal{B} = \{e_1, e_2\}, f$ is a rotation around the origin.
- If \mathcal{A} is the standard basis and $\mathcal{B} = \{e_2, -e_1\}, f$ is a symmetry with respect of the point (0, 0).

- If \mathcal{A} is the standard basis and f is the identity, then $\mathcal{B} = \{-e_2, e_1\}$.
- If \mathcal{B} id the standard basis and f is the symmetry with respect to the *y*-axis, then $A = \{e_2, e_1\}$.

Question 2. Which of the following statements are true?

- Let V be an n-dimensional vector space over \mathbb{R} . The map $V \to \mathbb{R}^n$, $v \mapsto [v]_{\mathcal{B}}$, that sends any vector $v \in V$ to its coordinate vector with respect to a basis \mathcal{B} of \mathbb{R}^n is linear.
- Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be linear with $\operatorname{Kern}(f) \neq \{0\}$ and $\operatorname{Bild}(f) \neq \{0\}$. Then there exists a non-trivial vector v that is in the kernel and in the image of f.
- If the kernel of a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$ is trivial, the map is invertible.