Serie 10

1. Consider the real vector space $M_{2 \times 2}(\mathbb{R})$.
(a) Compute the square of

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(b) Find a formula for the entries of the n-th power of $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ for all $n \in \mathbb{N}$.
2. Let $\mathbb{R}[X]_{n}$ be the vectorspace of all polynomials of degree $\leqslant n$ with real coefficients.
(a) Show that

$$
F: \mathbb{R}[X]_{n} \rightarrow \mathbb{R}[X]_{n}, \quad p \mapsto p^{\prime \prime}+p^{\prime}
$$

is a linear map, where p^{\prime} denotes the derivative of p.
(b) Determine the matrix of F with respect to the basis $\left(1, x, \ldots, x^{n}\right)$ of $\mathbb{R}[X]_{n}$.
3. Let K be a field.
(a) Consider the matrices

$$
A=\left(\begin{array}{cc}
A_{1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & A_{2}
\end{array}\right) \in M_{n \times n}(K)
$$

with $A_{1} \in M_{k \times k}(K)$ and $A_{2} \in M_{(n-k) \times(n-k)}(K)$ for some $k \geqslant 1$, and

$$
B=\left(\begin{array}{cc}
B_{1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & B_{2}
\end{array}\right) \in M_{n \times n}(K)
$$

with $B_{1} \in M_{k \times k}(K)$ and $B_{2} \in M_{(n-k) \times(n-k)}(K)$. Show that

$$
A \cdot B=\left(\begin{array}{cc}
A_{1} \cdot B_{1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & A_{2} \cdot B_{2}
\end{array}\right)
$$

(b) Let A be defined as above and assume that A_{1}, respectively A_{2}, is invertible as an element of $M_{k \times k}(K)$, respectively $M_{(n-k) \times(n-k)}(K)$. Show that A is invertible.
(c) Consider the space U of upper triangular matrices in $M_{n \times n}(K)$. Show that the product of 2 elements of U is in U.
4. Let V and W be finite-dimensinal vector spaces over a field K.
(a) Suppose that $2 \leqslant \operatorname{dim} V \leqslant \operatorname{dim} W$. Show that

$$
\{T \in \operatorname{Hom}(V, W) \mid T \text { is not injective }\}
$$

is not a subspace of $\operatorname{Hom}(V, W)$.
(b) Suppose that $\operatorname{dim} V \geqslant \operatorname{dim} W \geqslant 2$. Show that

$$
\{T \in \operatorname{Hom}(V, W) \mid T \text { is not surjective }\}
$$

is not a subspace of $\operatorname{Hom}(V, W)$.
5. Consider the linear maps $\mathbb{R}^{4} \xrightarrow{f} \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{3}$ given by

$$
f:\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \mapsto\binom{x_{1}+2 x_{2}+x_{3}}{x_{1}-x_{4}} \quad \text { and } \quad g:\binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{1}-x_{2} \\
3 x_{1}
\end{array}\right) .
$$

Let

$$
\mathcal{A}:=\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
4 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right)\right),
$$

and let \mathcal{B} be the standard basis of \mathbb{R}^{2} and let

$$
\mathcal{C}:=\left(\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right) .
$$

(a) Show that \mathcal{A} is a basis of \mathbb{R}^{4} and that \mathcal{C} is a basis of \mathbb{R}^{3}.
(b) Determine $g \circ f$ and the matrices
(i) of f with respect to the bases \mathcal{A}, \mathcal{B}.
(ii) of g with respect to the bases \mathcal{B}, \mathcal{C}.
(iii) of $g \circ f$ with respect to the bases \mathcal{A}, \mathcal{C}.
6. Let V be a vector space over a field K. Suppose that T_{1} and T_{2} are two linear maps from V to K that have the same kernel. Show that there exists a constant $c \in K$ such that $T_{1}=c T_{2}$.
Hint: Use Serie 9 exercise 1.

