Prof. M. Einsiedler
Prof. P. Biran

Serie 11

1. Suppose that V, W are finite-dimensional vector spaces over a field K. Let $T \in$ $\operatorname{Hom}(V, W)$. Prove that $\operatorname{rank}(T)=1$ if and only if there exists a basis \mathcal{B} of V and a basis \mathcal{C} of W such that with respect to these bases, all entries of $[T]_{\mathcal{C}}^{\mathcal{B}}$ equal 1 .
2. Suppose V is finite-dimensional and $S, T, U \in \operatorname{Hom}(V, V)$ with $S T U=\operatorname{Id}_{V}$. Show that T is invertible and that $T^{-1}=U S$.
3. Let V be a finite-dimensional vector spaces over a field K. Suppose that $T \in$ $\operatorname{Hom}(V, V)$, and that $\mathcal{A}=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ are bases of V. Prove that the following are equivalent:
(a) T is invertible.
(b) The columns of $[T]_{\mathcal{B}}^{\mathcal{A}}$ are linearly independent in $K_{\text {col }}^{n}$;
(c) The columns of $[T]_{\mathcal{B}}^{\mathcal{A}}$ span $K_{\text {col }}^{n}$;
(d) The rows of $[T]_{\mathcal{B}}^{\mathcal{A}}$ are linearly independent in $K_{\text {row }}^{n}$;
(e) The rows of $[T]_{\mathcal{B}}^{\mathcal{A}}$ span $K_{\text {row }}^{n}$.
4. Let V be a finite-dimensional vector space. Prove or disprove:
(a) Let $V^{\prime} \subset V$ be a linear subspace. Every automorphism $f: V^{\prime} \rightarrow V^{\prime}$ can be extended to an automorphism $\bar{f}: V \rightarrow V$.
(b) For every Endomorphism $f: V \rightarrow V$ its image $\operatorname{Im}(f)$ is a linear complement $\operatorname{Ker}(f)$ in V.
(c) There does not exist any linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that

$$
\operatorname{rank}(T)=\operatorname{dim} \operatorname{Ker}(T)
$$

5. Consider the space $M_{2 \times 2}(K)$ of 2-by-2 matrices over a field K.
(a) Show that if $A \in M_{2 \times 2}(K)$ satisfies $A^{2} \neq 0$, then $A^{k} \neq 0$ for all $k \geqslant 3$.
(b) Find a field K and a matrix $A \in M_{2 \times 2}(K) \backslash\{0\}$ such that $\exists n \in \mathbb{N}: A^{n}=0$.
6. Determine the ranks of the following rational $n \times n$-matrixes, those being elements of $M_{n \times n}(\mathbb{Q})$, depending on the positive integer n.
(a) $(k l)_{k, l=1, \ldots, n}$;
(b) $\left((-1)^{k+l}(k+l-1)\right)_{k, l=1, \ldots, n}$;
(c) $\left(\frac{(k+l)!}{k!l!}\right)_{k, l=0, \ldots, n-1}$

Hint: Note that the last matrix is indexed from 0 to $n-1$. You may use induction to find the desired formula.

