Serie 12

1. For each of the following matrices, determine whether or not it is invertible, and if it is compute its inverse.

(a)	$ \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} $	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$	
(b)	$ \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} $	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	
(c)	$ \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} $	$ \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 2 \end{array} $	
(d)	$\begin{pmatrix} 1\\ -1\\ 2\\ 3 \end{pmatrix}$	$\begin{array}{rrrr} 2 & -3 \\ 3 & -3 \\ 0 & 1 \\ 1 & -2 \end{array}$	

- 2. Show that a square matrix A is invertible if and only if its transpose A^T is invertible. Moreover, show that in that case we have $(A^T)^{-1} = (A^{-1})^T$.
- (a) Let V, W be two *n*-dimensional vector spaces over a field K. Let $S \in \text{Hom}(V, W)$ 3. and $T \in \text{Hom}(W, V)$ such that $T \circ S = \text{Id}_V$. Show that S is invertible and T is the inverse of S.
 - (b) Let $A, B \in M_{n \times n}(K)$ such that $A \cdot B = I_n$. Show that A is invertible with inverse B.
- 4. Consider $n \times n$ -matrices A and B over K.
 - (a) Show: If A or B is invertible, then AB and BA are similar.
 - (b) Does this also hold true without the condition in (a)?
- 5. Determine with the help of Gaussian elimination, for which values of α the following matrix over \mathbb{Q} is invertible:

$$\begin{pmatrix} 1 & 3 & -4 & 2 \\ 2 & 1 & -2 & 1 \\ 3 & -1 & -2 & -2\alpha \\ -6 & 2 & 1 & \alpha^2 \end{pmatrix}$$

6. Prove the following:

Theorem. (Bruhat-Decomposition) For every invertible matrix A there exists a permutation matrix P, i.e. a matrix which has exactly one non-zero, which equals 1 in every column and every row, and invertible upper triangular matrices B and B', such that

$$A = BPB'$$

Hint: Choose an invertible upper triangular matrix U, such that the sum of the number of leading zeros in all rows of UA is maximal. Then find a permutation matrix Q, such that QUA is an invertible upper triangular matrix.

Multiplying a matrix A on the left by a permutation matrix P permutes the rows of A. For example, if P has a 1 at index (i, j), the j-th line of A will become the i-th line of PA.

Single Choice. In each exercise, exactly one answer is correct.

- 1. Which assertion is not always satisfied?
 - (a) The base change matrix is the representation matrix of the identity map with respect to the according bases.
 - (b) Every finite dimensional vector space is isomorpic to K^n for some $n \ge 0$.
 - (c) The rank of a linear map $f: K^n \to K^m$ is at least min $\{n, m\}$.
 - (d) The representation matrix of an isomorphism is invertible.
- 2. Consider \mathbb{C} as real two-dimensional vectorspace with the ordered basis $\mathcal{B} := (1, i)$. The matrix $[\dots]_{\mathcal{B}}^{\mathcal{B}} := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is the representation matrix with respect to \mathcal{B} of the linear map $\mathbb{C} \to \mathbb{C}$:
 - (a) Complex conjugation $z \mapsto \bar{z}$
 - (b) $z \mapsto \operatorname{Re}(z)$
 - (c) $z \mapsto \operatorname{Im}(z)$
 - (d) $z \mapsto iz$

3. The rank of
$$\begin{pmatrix} 1 & 3 \\ -3 & -9 \end{pmatrix}$$
 over \mathbb{Q} is
(a) 0
(b) 1
(c) 2
(d) 3

4. For every $n \times m$ -Matrix A and every invertible $n \times n$ -matrix B, we have

(a)
$$\operatorname{rank}(BA) = \operatorname{rank}(B) \cdot \operatorname{rank}(A)$$

(b) $\operatorname{rank}(BA) = \operatorname{rank}(B) + \operatorname{rank}(A)$
(c) $\operatorname{rank}(BA) = \operatorname{rank}(A)$

(d) $\operatorname{rank}(BA) = \operatorname{rank}(B)$

Multiple Choice Fragen.

1. Consider the following ordered bases of $\mathbb{R}[x]_2$:

$$\mathcal{B} = (1, x, x^2), \quad \mathcal{C} = (x^2, (x+1)^2, (x+2)^2)$$

Determine the base change matrix $Q := [\mathrm{Id}_{\mathbb{R}[x]_2}]_{\mathcal{C}}^{\mathcal{B}}$.

(a)
$$Q = \begin{pmatrix} 0 & 1 & 4 \\ 0 & 2 & 4 \\ 1 & 1 & 1 \end{pmatrix}$$

(b) $Q = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{pmatrix}$
(c) $Q = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2 & 1 \\ 4 & 4 & 1 \end{pmatrix}$
(d) $Q = \frac{1}{4} \begin{pmatrix} 2 & -4 & 4 \\ -1 & 4 & -3 \\ 4 & 0 & 0 \end{pmatrix}$
(e) $Q = \frac{1}{4} \begin{pmatrix} 2 & -3 & 4 \\ -4 & 4 & 0 \\ 2 & -1 & 0 \end{pmatrix}$
(f) $Q = \frac{1}{4} \begin{pmatrix} 2 & -1 & 4 \\ -4 & 4 & 0 \\ 4 & -3 & 0 \end{pmatrix}$

2. Let $A \in M_{n \times n}(K)$ and $P \in GL_n(K)$, denote

$$r := \operatorname{rank}(A - I_n)$$
 and $s := \operatorname{rank}(PAP^{-1} - I_n).$

Which of the following statements hold?

(a) r = s; (b) $r \neq s$; (c) r > s; (d) r < s; (e) if $r < n, \exists v \in V \smallsetminus \{0\}$ such that Av = v.