
Chapter 1

Introduction

1.1 A Nice Introduction

1.1.1 Fibonacci

In this introduction we shall solve a problem with the help of linear algebra, which
annoyed me as a teenager.

In middle school we learned about sequences. Consider the following arithmetic
sequence: For two numbers a, d define

a0 = a

an = an−1 + d, n ≥ 1
.

Here, one can fairly easily find a formula for the n-th element of the sequence. To
be more specific, this means that we can find an expression for the n-th element of the
sequence which solely depends on n. In this case, the expression is given by an = a+nd

for n ≥ 0. If we would like to, we could easily determine a12345 in under half a minute
without using a calculator.

We can apply a similar principle to the geometric sequence:
Let a, q be two numbers, then definea0 = a

an = an−1q, n ≥ 1
.

In this case an is given by an = aqn, where n is a variable and ≥ 0.
For me, the interesting part is basically over. One can “prove" some identities, which

are mostly tautological, regarding the sums of these sequences (and that might still be
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slightly interesting). But actually one can pose many far more interesting questions
e.g. about arithmetic sequences. For example:

1. Let an = a+ nd be an arithmetic sequence. Does this sequence contain infinitely
many prime numbers? That is, do there exists infinitely many n ∈ N such that
an is prime?

Assuming a, d are not coprime (i.e. there exist l ≥ 1 such that l divides a and d),
then the sequence contains at most one prime number.

Theorem 1.1.1 (Dirichlet, 1837). Let a, d ∈ N, a ≥ 1, d > 1 be coprime. Then
the sequence an = a+ nd contains infinitely many primes.1.

For the proof of the theorem one (more or less) needs a bachelor in mathematics
(this could be a topic for a bachelor thesis). If you do not want to wait till then,
start here: [2].

2. Because of Dirichlet’s Theorem (Theorem 1.1.1) we can ask when does the first
prime number in an arithmetic sequence appear. In 1944, Yuri Vladimirovich
Linnik, a mathematician who greatly influenced my own research, proved that
there exist constants c, L > 0 such that the first prime number in an arithmetic
sequence a + nd, where a, d are coprime (and 1 ≤ a < d) is smaller than cdL.
Take some time to fully understand this statement.

3. Now we can ask whether we can find a “chain" of primes in any arithmetic se-
quence. What exactly we mean by that you can look up here.

These questions and theorems are indeed interesting, but their solution does not
have much to do with linear algebra, so let us take a look at another sequence – the
Fibonacci sequence defined as follows:


a0 = 0

a1 = 1

an = an−1 + an−2, n ≥ 2

(1.1)

If we compare this sequence with those above, one particular question immediately
comes to mind: Can we find an explicit expression for the n-th element of the sequence?

In fact, it is not at all obvious that such an expression even exists, but as a teenager
I did hear about it. But when I asked, nobody could tell me what exactly it was or
how to find it (back in the old days we did not have Wikipedia . . . ). Together, we will

1For example there are infinitely many primes of the form 1 + 4k for k ∈ N and infinitely many of
the form 3 + 4k for k ∈ N.
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now find this expression and in one go get to know nearly all terminology and topics
of this lecture course (well, at least of the first semester). The first step is very counter
intuitive – we will make matters more complicated. We have no idea how to solve this
problem and will look at infinitely many other (related) problems, which we also have
no idea how to solve... seems crazy, does it not?

To introduce these new problems, we will develop some mathematical language. This
means we will introduce some terminology and definitions. We will regard sequences
as objects and will denote them by these lovely calligraphic letters. For example, we
will write: Let F denote the Fibonacci-sequence, defined in (1.1)

Definition 1.1.2. We say that we know a sequence well if we have found a formula
for its n-th element.

For example, we know all arithmetic and geometric sequences well. We can now
express our goal as follows: We want to know F well. As promised, we will make
things more complicated:

Definition 1.1.3. Let a, b ∈ R be two real numbers. We define the sequence Fa,b by
recursion: 

a0 = a

a1 = b

an = an−1 + an−2, for n ≥ 2

Taking a = 0, b = 1 we get the standard Fibonacci-sequence F . So our goal in fact
is to know F0,1 well. The key step is to define now a completely crazy new goal:

New goal: We want to know Fa,b well for all a, b ∈ R.
How can it be that we have so much more hope of solving the new goal than the

original one? It might seem insane at first, as the new goal actually encompasses
infinitely many variants of the old problem. The new problem is a space of problems
and we can use this to our advantage! Namely, this space has a certain structure and
this gives us some nice properties to work with. Before we start, we just introduce one
more definition:

Definition 1.1.4. A sequence A is called a Fibonacci-sequence if there are a, b ∈ R
such that A = Fa,b. We denote by Fib the space of all Fibonacci-sequences.

Exercise 1.1.5. Show that a sequence (a0, a1, . . .) is a Fibonacci-sequence if and only
if an = an−1 + an−2 for all n ≥ 2.

We have
Fib = {Fa,b | a, b ∈ R}

and our goal is to know all of the elements of Fib well.
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Which structure does Fib have?

Take two sequences F1 = (a0, a1, a2, a3, . . .), F2 = (b0, b1, b2, b3, . . .) and add them
component-wise

F1 + F2 := (a0 + b0, a1 + b1, a2 + b2, a3 + b3, . . .).

Claim: Let F1 and F2 be two Fibonacci-sequences, then F1 + F2 is also a Fibonacci-
sequence. Let us denote the elements of F1 + F2 by F1 + F2 = (c0, c1, c2, c3, . . .).
According to Exercise 1.1.5 we only have to show that

cn = cn−1 + cn−2

for all n ≥ 2.
So let us prove it: We have

cn = an + bn

and as F1,F2 ∈ Fib it follows that

an + bn = (an−1 + an−2) + (bn−1 + bn−2) = (an−1 + bn−1) + (an−2 + bn−2) = cn−1 + cn−2.

Thus, indeed cn = cn−1 + cn−2.

Exercise 1.1.6. With the notation introduced in Definition 1.1.3 convince yourself
that the argument above actually shows the following:

Fa,b + Fc,d = Fa+c,b+d.

To summarize, we can add two elements of F . Hence, space of Fibonacci-sequences
Fib has an addition. Apart from addition we have another operation in Fib: multi-
plication by a scalar. Here, by a scalar we simply mean a real number. Later in this
course we will consider other “types" of numbers, which form a so-called field (maybe
you have already heard of the field of real/complex numbers or of a finite field) and a
scalar is then simply an element of a field. But for now, a scalar is a synonym for a
real number.

So, let α ∈ R be a scalar and A = (a0, a1, a2, . . .). We define the multiplication of A
by a scalar α ∈ R by

αA := (αa0, αa1, αa2, . . .).

Exercise 1.1.7. Arguing similarly as in the addition-case, show that if α ∈ R and
A ∈ Fib, then αA ∈ Fib. Furthermore, show that αFa,b = Fαa,αb.

We thus have seen that the space Fib has an addition and a multiplication by a
scalar. So how does this help us in solving our task of knowing F0,1 well?
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Observe that if one knows F1 = (a0, a1, . . .) and F2 = (b0, b1, . . .) well, then one also
knows F1 +F2 well. Indeed, if we have a formula for an and bn, then we also have one
for the n-th element of F1 + F2: if an = f(n) and bn = g(n), then f(n) + g(n) is a
formula for F1 +F2. Similarly, if one knows a sequence A ∈ Fib well, then one knows
αA also well for all α ∈ R. More generally, show:

Exercise 1.1.8. If one knows F1, . . . ,Fk well, then one knows

α1F1 + . . .+ αkFk (1.2)

well for all α1, . . . , αk ∈ R.

Expressions of the form (1.2) are called linear combinations of sequences.
With the help of this structure of Fib we can transfer our knowledge of some elements

of Fib to other elements of Fib.
Well, this all looks nice, but we still do not know any element of Fib well! Well,

actually this is not entirely true. There is one element we know well.

Exercise 1.1.9. Find it! (Before you continue reading.)

We do know well the Fibonacci-sequence F0,0: if F0,0 = (a0, a1, . . .), then an = 0 for
all n ≥ 0.

Does this mean that we know many other elements, simply from the structure of
Fib? Sadly no, we do not, because neither F0,0 + F0,0 nor αF0,0 produce any new
sequences... We simply get F0,0 over and over. Hence, if we know only F0,0 well,
we cannot achieve anything with addition and multiplication by a scalar. How many
sequences do we have to know well in order to know well all elements of Fib?

Assume that we know a Fibonacci-sequence Fa,b well, where a and b are not zero.
Then via multiplication by a scalar we know Fαa,αb well for all α ∈ R.

Exercise 1.1.10. Show that the set {Fαa,αb | α ∈ R} ⊆ Fib under the assumption
(a, b) 6= (0, 0) has infinitely many elements but still does not equal Fib.

This exercise shows that we need to know at least two Fibonacci-sequences well to
know all elements of Fib well. Do there exist two sequences in Fib, which we know
well and with the help of which we then know all elements of Fib well? Can we find
two sequences A,B ∈ Fib, such that every sequence is a linear combination of A and
B?

If we know F0,1 and F1,0 well for example, then we know all elements of Fib well:
we can write a general element Fa,b of Fib as follows:

Fa,b = aF1,0 + bF0,1
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Therefore, we can find a formula for Fa,b if we know the formulas for F0,1 and F1,0.
Again, this is very cool, but we still have not solved our original problem! We still

do not know F0,1 well! In the following section we will get to know other sequences well
and with these we will be able to know well all other elements of Fib too.

Remark 1.1.11. The fact that

(1) two sequences suffice,

(2) one sequence does not suffice (Exercise 1.1.10),

(3) in every set of three sequences there exists a sequence we can leave out without
changing the set of “achievable sequences",

are connected to the fact that the space Fib has dimension 2. This does not come as
a surprise. Dimension more or less measures the number of “degrees of freedom" of a
space. Convince yourself that Fib has two degrees of freedom in the reals. In other
words, Fib is a plane, in which every point represents a sequence.

1.1.2 Prior Knowledge and Symmetry

How does one come up with an idea for the solution of a problem? Usually, by using
prior knowledge, which is relevant to the solution or by recognizing certain patterns or
symmetries of the problem.

Perhaps you are thinking that the problem we are trying to solve cannot have any
symmetries, as it is not a geometric problem...

Prerequisites

Before we explain what symmetry we are talking about and why it is the key to
solving the problem, we shall use our prior knowledge to find Fibonacci-sequences we
know well.

Exercise 1.1.12. Show that Fib does not contain arithmetic sequences apart from
F0,0.

The exercise shows that we cannot advance with arithmetic sequences. How about
geometric ones? Can a sequence of the form (a, aq, aq2, aq3, . . .) be a Fibonacci-sequence?

For simplicity, let us first consider a = 1, that is consider

Gq = (1, q, q2, . . .)

where q 6= 0. The sequence Gq is a Fibonacci-sequence, if and only if

qn = qn−1 + qn−2 (1.3)
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for all n ≥ 2. As q 6= 0, we can divide (1.3) by qn−2 and hence (1.3) is equivalent to

q2 = q + 1. (1.4)

This we can solve with other prior knowledge, namely the formula for solving quadratic
equations2 The equation (1.4) is then true if and only if

q =
1±
√
5

2
.

Define:

φ :=
1 +
√
5

2
≈ 1.618033 . . . (golden section)

ψ :=
1−
√
5

2
≈ −0.618033 . . . (conjugated golden section).

Let us summarize what we have established so far. The sequences

Gϕ = (1, ϕ, ϕ2, ϕ3, . . .) and Gψ = (1, ψ, ψ2, ψ3, . . .)

are both elements of Fib, which we know well! This is great, but can we express the
original sequence F0,1 (via linear combinations of Gϕ and Gψ)? Yes, indeed we can!

Exercise 1.1.13. Verify that

1

ϕ− ψ
Gϕ +

1

ψ − ϕ
Gψ = F0,1.

Remark 1.1.14. To solve Exercise 1.1.13, you probably have to solve a system of linear
equations. These are central in linear algebra. One of the first topics we shall discuss
is going to be an algorithm to solve systems of linear equations – Gaussian elimination.

Exercise 1.1.13 gives us a formula for the n-th element of F0,1 = (a0, a1, a2, . . .):

an =
1

ϕ− ψ
ϕn +

1

ψ − ϕ
ψn =

ϕn − ψn

ϕ− ψ
=

(1+
√
5

2
)n − (1−

√
5

2
)n

√
5

.

We have achieved our goal!

Exercise 1.1.15. Let F0,1 = (F0, F1, F2, . . .). Under the assumption, that limn→∞
Fn

Fn−1

exists, compute this limit. This gives us another motivation to study geometric se-
quences with q as their limit.

2Finally a good reason to learn how to solve quadratic equations!
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Symmetry

One could argue that what we have done above was based on pure luck. How could
we have known that geometric sequences will have proven to be useful? This is a fair
point. As hinted at above one could discover these geometric sequences by looking at
the symmetry of the space Fib. But what exactly does one mean by symmetry in this
case? If X is some geometric space, then a symmetry of X is a map3

T : X → X,

which preserves (or respects) all/some of the geometric properties of X, e.g. distances,
angles etc. If T : X → X is a symmetry, the set of fixed points

Fix(T ) = {x ∈ X : T (x) = x}

usually is an interesting set to study. In other words, a fixed point of T is an element
which gets mapped by T to itself. To be able to transfer the terminology of a fixed
point to other (more general) spaces, we define the following. Let X be a space with a
certain structure. A symmetry of X is a map : X → X, which preserves/respects the
structure of X.

If X = Fib we get the following:

Definition 1.1.16. A map T : Fib → Fib is called a symmetry of Fib, if for A,B ∈
Fib and α ∈ R we have

T (A+ B) = T (A) + T (B) and T (αA) = αT (A). (1.5)

The requirements in (1.5) are what we mean by T “respects" the structure of Fib.
Let us first think about which maps T : X → X we already know. Here are three

rather unexciting examples:

1. The identity map

Id : Fib→ Fib

A 7→ A,

which “does not do anything”.

3A map is another name for a function. A function (or a map) assigns to every element of X a
specific element of X. This and other related basic notions will defined carefully and discussed here
as well as in the Analysis I course.
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2. The “multiplication-by-a-scalar" map: For α ∈ R we define

Mα : Fib→ Fib

A 7→ αA.

3. The vector addition/sequence addition map: For B ∈ Fib we define

AB : Fib→ Fib

A 7→ A+ B.

Exercise 1.1.17. Show that Id and Mα for all α ∈ R fulfills the requirements in (1.5).
Additionally, show that AB for B 6= F0,0 does not fulfill the requirements in (1.5).

As mentioned earlier, these symmetries are not particularly interesting. Perhaps
because they are not connected to the fact that Fib is a space of sequences. In fact,
these map do exist for every space with an addition and multiplication by a scalar.

Exercise 1.1.18. Before you continue reading, try to find a different interesting map
T : Fib → Fib, which takes into account that Fib is a space of sequences? (Hint: if
one knows F1,0 well, then one also knows F0,1 well. Why?)

In spaces of sequences we also have a translation map

S : Fib→ Fib

(a0, a1, a2, . . .) 7→ (a1, a2, . . .).

Exercise 1.1.19. (1) Verify that S(A) ∈ Fib for A ∈ Fib.

(2) Verify that S satisfies the requirements in (1.5).

This translation map turns out to be an interesting symmetry, and it is related to
spaces of sequences. Therefore, we can ask ourselves which fixed points does S have.

Exercise 1.1.20. Show that F0,0 is the only fixed point of S.

OK, so the fixed points of S are not so interesting. It turns out that for maps
that fulfill (1.5), the set of fixed point mostly is boring. The requirements imposed on
S(A) = A are simply too limiting to produce interesting sequences. Therefore, let us
consider a sightly weaker requirement (which is also connected to multiplication by a
scalar).

Definition 1.1.21. Let T : Fib→ Fib be a symmetry. A sequence A 6= F0,0 is called
an eigensequence of T , if there exists an α ∈ R, such that

T (A) = αA.
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The scalar α is called the eigenvalue of A.

Thus, we want to find all eigensequences4 of the symmetry S.
To this end, assume that A = (a0, a1, a2, . . .) 6= F0,0 is an eigensequence with eigen-

value α. Then S(A) = αA or in other words

(a1, a2, a3, . . .) = α(a0, a1, a2, . . .) = (αa0, αa1, αa2, . . .).

Therefore, an = αan−1 for all n ≥ 1. Hence, A has the form

A = (a0, a0α, a0α
2, a0α

3, . . .). (1.6)

This means that A is a geometric sequence. So which α (and which a0) come into
question? We have already seen this in Section 1.1.2, but let us repeat this briefly.
Because of (1.6) we have

an = αna0

for all n ≥ 0. As A ∈ Fib, we have a2 = a1 + a0 and putting these two facts together
we arrive at

α2a0 = a2 = a1 + a0 = αa0 + a0 = (α + 1)a0. (1.7)

From A 6= F0,0 it follows that a0 6= 0. (Why? Convince yourself.) Hence, (1.7) is
equivalent to α2 = α+1. Does this seem familiar? This is precisely the equation (1.4).
This means: if A is an eigensequence with eigenvalue α, then α2 = α+ 1, hence either
α = ψ or α = ϕ. That is, A is a geometric sequence with α = ϕ or α = ψ. For
simplicity we choose a0 = 1. Then we get the two sequences we guessed earlier

Gϕ = (1, ϕ, ϕ2, ϕ3, . . .) and Gψ = (1, ψ, ψ2, ψ3, . . .).

Summary : The n’th Fibonacci-number Fn is given by

(
1+
√
5

2

)n − (1−√5
2

)n
√
5

.

More generally, try to solve the following:

Exercise 1.1.22. Find a formula for the n-th element of Fa,b depending on a, b and n.

There are many other interesting things in this context, but it’s about time to begin
with our course. Here is a small exercise for “dessert":

4For the advanced reader: eigensequences are actually fixed points with respect to S on the
projective space P(Fib).
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Exercise 1.1.23. Show that

ϕ = 1 +
1

1 +
1

1 +
1

1 + . . .

.

What exactly is meant by this notation and how this corresponds to the movement
of planets, you can ask me or look up here [1, §1.1].

Remark 1.1.24. The idea for this introduction came to mind, when I was a teaching
assistant at the Hebrew University and was asked why linear algebra was fun. I shared
this question with the world (of stackexchange) and many of the answers given there
are very interesting and worth thinking about!

Figur 1.1: Your new t-shirt?
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