
D-MATH Lineare Algebra I HS 2022
Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 2
Exercises 2,3, and 6 are taken from Professor Einsiedler’s Analysis lecture notes.
In this exercise sheet, we assume that N, the set of natural numbers, denotes all integers
greater or equal to 1.

1. Logic. Formulate the statement “there does not exist a largest natural number”
and the statement “for every natural number n there exists a strictly larger natu-
ral number” in First-order logic. Show by transformation in First-order logic the
equivalence of both statements.

Solution: “There does not exists a largest natural number” can be written as

␣pDm P N@n P N : m ě nq.

The proposition “for every natural number n there exists a strictly larger natural
number” can be written as

@m P NDn P N : n ą m.

We show equivalence between the two formulae as follows:

␣pDm P N@n P N : m ě nq

ðñ @m P NDn P N : ␣pm ě nq

ðñ @m P NDn P N : m ă n.

2. Archimedean principle. Describe the set
8
č

n“1

"

x P R | ´
1

n
ď x ď

1

n

*

,

where n runs through the set N of natural numbers.

Solution: Let x P R. Assume first that x ą 0. There exists N P N such that
N ą 1{x. Hence 1

N
ă x. So,

8
č

n“1

tx P Rą0 | x ď 1{nu “ ∅.

Similarly, if x ă 0, there exists N P N such that ´N ă x and hence ´1{N ą x.
This implies

8
č

n“1

tx P Ră0 | x ě ´1{nu “ ∅.

Therefore,
8
č

n“1

"

x P R | ´
1

n
ď x ď

1

n

*

“ t0u.
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3. Cartesian product. Let X, Y be sets and A,A1 subsets of X. Moreover, let B,B1

be subsets of Y . Show

pAˆBq X pA1
ˆB1

q “ pAX A1
q ˆ pB XB1

q.

Convince yourself, for example by drawing a picture, that there does not exist a
similar formula for unions of sets.

Solution: We first prove the inclusion from left to right:

px, yq P pAˆBq X pA1
ˆB1

q

ùñ x P AX A1 and y P B XB1

ùñ px, yq P pAX A1
q ˆ pB XB1

q.

Let us now prove the other inclusion:

px, yq P pAX A1
q ˆ pB XB1

q

ùñ x P pAX A1
q and y P pB XB1

q

ùñ px, yq P AˆB and px, yq P A1
ˆB1

ùñ px, yq P pAˆBq X pA1
ˆB1

q.

4. Maps and sets. Let
f : RÑ R

x ÞÑ ax` b

for some non-zero a P R and for some b P R. Draw the following set

tpx, yq P R2
| y ď fpxqu X tpx, yq P R2

| x ě 0u X tpx, yq P R2
| y ě 0u

(a) for a “ 2, b “ 1;

(b) for a “ ´2, b “ 1.

Solution:

Abbildung 1: Exercise 4.a) Abbildung 2: Exercise 4.b)
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5. Inverses.

(a) Let f : X Ñ Y be a map. Assume that there exist maps g1 : Y Ñ X and
g2 : Y Ñ X such that

g1 ˝ f “ idX and f ˝ g2 “ idY .

Show then that g1 “ g2. Show that then g1 “ g2 “ f´1 and that f is bijective.
Solution: We have

g1 “ g1 ˝ idY “ g1 ˝ pf ˝ g2q “ pg1 ˝ fq ˝ g2 “ idX ˝g2 “ g2.

So g1 “ g2 “ f´1. Moreover, since f ˝ g2 “ idY , f is surjective. Additionally,
since g1 ˝ f “ idX , f is injective.

(b) Give an example of a function that admits a right-inverse but is not bijective.
By right-inverse, we mean that letting f be a map from X to Y , there exists
a map g from Y to X such that f ˝ g “ idY .

Solution: Consider the maps

f : R Ñ Rě0

x ÞÑ x2

and
g : Rě0 Ñ R

x ÞÑ
?
x

We clearly have f ˝ g “ idRě0 , so g is a right-inverse for f . However, f is not
bijective as it is not injective.

6. Maps and operations on sets. Consider a function f : X Ñ Y . Let A,A1 Ď X
and B,B1 Ď Y be subsets of X and Y respectively.

(a) Prove that fpf´1pBqq Ď B is true. Under what conditions for f is equality
guaranteed?

(b) Prove that f´1pfpAqq Ě A is true. Under what conditions for f is equality
guaranteed?

(c) Show the equalities

fpAY A1
q “ fpAq Y fpA1

q, f´1
pB YB1

q “ f´1
pBq Y f´1

pB1
q.

(d) Prove that fpA X A1q Ď fpAq X fpA1q and that equality is satisfied, if f is
injective. Verify in that case that also fpA∖ A1q “ fpAq∖ fpA1q is true.
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(e) Prove that f´1pB XB1q “ f´1pBq X f´1pB1q and f´1pY ∖Bq “ X ∖ f´1pBq
are true.

In summary you should remember that forming the preimage commutes with all
the set theoretic operations discussed in the lecture (including union, intersection,
complement), while forming the image only satisfies this for unions or under more
restrictive conditions on f .

Solution:

(a) Let y P fpf´1pBqq. By definition,

f´1
pBq “ tx P X | fpxq P Bu.

Hence, since there exists x P f´1pBq such that y “ fpxq, we have y P B,
which shows the inclusion. Equality will be guaranteed if f is surjective.
Indeed, y P B and f is surjective implies that there exists some x P X such
that fpxq “ y and that this x is in f´1pBq. So, y P fpf´1pBqq.

(b) By definition
f´1

pfpAqq “ tx P X | fpxq P fpAqu.

So any x P A is in f´1pfpAqq since then fpxq P fpAq. If f is injective then
equality will be guaranteed. Indeed, x P f´1pfpAqq implies that the image of
x coincides with the image of an element x1 of A. So, if f is injective, we must
have x “ x1 P A.

(c) • Let y P fpA Y A1q. This implies that y is the image through f of some
x P A Y A1. If x P A, then y “ fpxq P fpAq and if x P A1, y P fpA1q.
Hence, y P fpAq Y fpA1q. This shows fpAY A1q Ă fpAq Y fpA1q.
For the reverse inclusion, let y P fpAq Y fpA1q. If y P fpAq then y P
fpA Y A1q since A Ď A Y A1. Similarly, if y P fpA1q then y P fpA Y A1q.
This shows y P fpAq Y fpA1q ùñ fpAY A1q.

• We first show the left to right inclusion. Let x P f´1pB YB1q. By defini-
tion, this implies y :“ fpxq P B Y B1. If y P B then x P f´1pBq and if
y P B1, then x P f´1pB1q. Hence x P f´1pBq Y f´1pB1q.
To show the right to left inclusion, let x P f´1pBq Y f´1pB1q. If x P
f´1pBq, then y :“ fpxq P B. If x P f´1pB1q, then y P B1. Hence y P
B YB1, which implies that x P f´1pB YB1q.

(d) Let y P fpA X A1q. Then there exists some x P A X A1 such that y “ fpxq.
Since x P A X A1 Ď A, we have y P fpAq. Similarly, y P fpA1q. Hence
y P fpAq X fpA1q. Assume now that f is injective and let y P fpAq X fpA1q.
Then, there exist x P A and x1 P A1 such that fpxq “ y “ fpx1q. Since f
is injective, we must have x “ x1 P A X A1 and therefore y P fpA X A1q.
For the second part of the question, notice that A ∖ A1 “ A X pA1qc. We
therefore have fpA ∖ A1q Ď fpAq X fppA1qcq. We are done if we show that
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fpAq X fppA1qcq “ fpAq X fpA1qc under the assumption that f is injective. If
y P fpAqXfppA1qcq, then the unique preimage of y is some x P AXpA1qc. Hence
y R fpA1q and y P fpAq, i.e. y P fpAq X fpA1qc. Now, if y P fpAq X fpA1qc its
unique preimage is in A and it cannot be in A1. Therefore y P fpAqXfppA1qcq.

(e) Let x P f´1pB X B1q. Then y :“ fpxq P B X B1. So, x P f´1pBq and x P
f´1pB1q. For the reverse inclusion, assume that x P f´1pBq X f´1pB1q. Then
the image of x is in B and in B1, i.e. x P f´1pB XB1q.

Let x P f´1pY ∖ Bq. Then the image y “ fpxq of x is in Y ∖ B, which
implies that x is not in the preimage of B, i.e. x P X ∖ f´1pBq. Conversely,
let x P X ∖ f´1pBq. Then the image of x will land anywhere in Y apart from
B. Therefore x P f´1pY ∖Bq.

Alternative solution: We have

f´1
pB XB1

q “ tx P X | fpxq P B XB1
u

“ tx P X | fpxq P B ^ fpxq P B1
u

“ tx P X | fpxq P Bu X tx P X | fpxq P B1
u

“ f´1
pBq X f´1

pB1
q.

Additionally,

f´1
pY ∖Bq “ tx P X | fpxq P pY ∖Bqu

“ tx P X | fpxq P Y ^ fpxq R Bu

“ tx P X | fpxq P Y u X tx P X | fpxq R Bu

“ X X tx P X | fpxq R Bu.

On the other hand, since f´1pBq “ tx P X | fpxq P Bu

X ∖ f´1
pBq “ tx P X | x R f´1

pBqu

“ tx P X | fpxq R Bu.

This equals the last term of the previous string of equality and hence proves
the statement.
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