
D-MATH Lineare Algebra I HS 2022
Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 4

1. Let m P R. Describe the solutions of the following system of equations depending
on m:

"

x`my “ ´3
mx` 4y “ 6

When is the set of solutions S a linear subspace of R2? Give a geometrical inter-
pretation of S depending on m.

Solution: We use Gauss elimination. We do not change the first row but we replace
the second row R2 by R2 ´mR1. We obtain the equivalent system

"

x`my “ ´3
p4´m2qy “ 6` 3m “ 3pm` 2q

We now discuss the solutions depending on the value of m:

• If m R t˘2u, then 4´m2 does not vanish. Hence,

y “
3pm` 2q

4´m2
“

3pm` 2q

p2`mqp2´mq
“

3

2´m

Plugging it into the first equation, we find

x “
6

m´ 2
.

The system therefore admits a unique solution, namely p ´6
2´m

, 3
2´m

q. Geome-
trically, this means that the two lines defined by the equations x`my “ ´3
and mx` 4y “ 6 intersect in this point.

• If now m “ 2, the last line becomes 0 “ 12. Therefore the system doesn’t
admit any solution. Geometrically, this implies that the two lines are parallel
when m “ 2.

• If m “ ´2, then the last line becomes 0 “ 0 and the system is equivalent to
x “ ´3´my. We then have

S “ tp´3´my, yq | y P Ru.

Geometrically, this implies that both equations define the same line when
m “ ´2.

In none of these cases is S Ď R2 a linear subspace since it never contains 0 ¨ S “
tp0, 0qu.
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2. Which of the following sets are linear subspaces of the given vector spaces? What
changes when R is replaced by F2 in (b) and (c)?

(a) S1 :“ tpx1, x2, x3q P R3 | x1 “ x2 “ 2x3u Ď R3

(b) S2 :“ tpx1, x2q P R2 | x2
1 ` x4

2 “ 0u Ď R2

(c) S3 :“ tpµ` λ, λ2q P R2 | µ, λ P Ru Ď R2

Solution:

(a) We see that S1 is the set of solutions of a homogeneous linear system of
equations and thus a linear subspace.

(b) The equation x2
1 ` x4

2 “ 0 has only the solution x1 “ x2 “ 0 in R. Therefore,
we have S2 “ tp0, 0qu and thus it is a linear subspace.

If we consider the equation over F2, the situation is different. For every λ P F2,
we have

λ2
“ λ.

Hence, the equation defining S2 is equivalent to x1 ` x2 “ 0 over F2. As the
set of solutions of a homogenoues linear equation S2 is a linear subspace of
F2
2.

(c) The set S3 is not a linear subspace of R2, as for example p1, 1q is contained
in it, but not the multiple

p´1q ¨ p1, 1q “ p´1,´1q,

as the square of any real number is positive.

Over F2, we again use the identity λ2 “ λ. For any x, y P F2, we define

λ “ y, µ “ x´ y.

Then pµ ` λ, λq “ px, yq, hence S3 “ F2
2. In particular, it is also a linear

subspace.

3. Let K be a field in which 1` 1 ‰ 0 and consider the space

V “ KK
“ AbbpK,Kq :“ tf : K Ñ Ku.

Recall from the lectures that it is a vector space when endowed with scalar mul-
tiplication, namely pα ¨ fqpxq “ αfpxq, @α P K, @x P K, and with point wise
addition, i.e. pf ` gqpxq “ fpxq ` gpxq, @x P K.

Now let

Veven :“ tf : K Ñ K | fp´xq “ fpxq @x P Ku,

Vodd :“ tf : K Ñ K | fp´xq “ ´fpxq @x P Ku.
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Show that Veven and Vodd are linear subspaces of V , that

Veven ` Vodd :“ tv ` w | v P Veven, w P Voddu “ V

and that Veven X Vodd “ t0u.

Solution: First note that the function that vanishes everywhere belongs both sub-
sets, hence they are not empty. Now let f, g P Veven and a P K. We have

@x P K : pf ` a ¨ gqp´xq “ fp´xq ` a ¨ gp´xq “ fpxq ` a ¨ gpxq “ pf ` a ¨ gqpxq.

Hence f ` a ¨ g P Veven for all f, g P Veven, for all a P K. This proves that Veven is a
linear subspace of V .

Similarly, let f, g P Vodd and let a P K. Then,

pf ` a ¨ gqp´xq “ ´fpxq ´ a ¨ gpxq “ ´pf ` a ¨ gqpxq.

Hence Vodd is a linear subspace of V .

Assume now that f P Vodd X Veven. Then, for all x P K

´fpxq “ fp´xq “ fpxq,

which implies that we must have fpxq “ 0 for all x P K since 1` 1 ‰ 0.

Finally, we show that Veven ` Vodd “ V . Let f P V and define

fevenpxq :“
fpxq ` fp´xq

2

foddpxq :“
fpxq ´ fp´xq

2
.

You can easily see that feven P Veven, that fodd P Vodd and that

fpxq “ fevenpxq ` foddpxq.

This concludes the proof.

4. Let 8 and ´8 denote 2 distinct objects, neither of which is in R, Define an
addition and a scalar multiplication on V :“ R Y t8u Y t´8u as follows: in R,
addition and multiplication are defined as usual. For t P R define

t8 “

$

&

%

´8 if t ă 0,
0 if t “ 0,
8 if t ą 0,

tp´8q “

$

&

%

8 if t ă 0,
0 if t “ 0,
´8 if t ą 0,

t`8 “ 8` t “ 8, t` p´8q “ p´8q ` t “ ´8.

8`8 “ 8, p´8q ` p´8q “ p´8q, 8` p´8q “ p´8q `8 “ 0.

Is V a vector space over R?
Solutions : We have p1´2q ¨8 “ ´1 ¨8 “ ´8 but p1 ¨8q`p´2 ¨8q “ 8`p´8q “
0 ‰ ´8. So, axiom (V8) doesn’t hold and V isn’t a vector space over R.
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5. Let X be a set and let P be its power set (this means that P is the set of all
subsets of X). For all A,B P P and for λ P F2, define

A△B :“ pAYBq∖ pAXBq

λ ¨ A :“

"

∅, for λ “ 0,
A, for λ “ 1.

Show that pP,△, ¨,∅q is a F2-vector space.

Solution: Throughout, let A,B,C P P and s, t P F2. We carefully check the axioms.

(V1) We can get intuition for associativity using Venn diagrams. We obtain the
following picture:

Abbildung 1: Symmetric difference of 3 sets

Let us now prove it. Let x P A△pB△Cq. We then have

x P A△pB△Cq

ô px P A^ x R B△Cq _ px R A^ x P B△Cq

ô
“

x P A^␣
`

px P B ^ x R Cq _ px R B ^ x P Cq
˘‰

_
“

x R A^
`

px P B ^ x R Cq _ px R B ^ x P Cq
˘‰

We split the last expression above into the two parts delimited by square
brackets and simplify them individually. The second one can be written as

px R A^ x P B ^ x R Cq _ px R A^ x R B ^ x P Cq

by distributing the logical “and ” inside the parentheses.
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On the other hand, for the first part

x P A^␣
`

px P B ^ x R Cq _ px R B ^ x P Cq
˘

ô x P A^
`

␣px P B ^ x R Cq ^ ␣px R B ^ x P Cq
˘

ô x P A^
`

px R B _ x P Cq ^ px P B _ x R Cq
˘

ô x P A^
`

px R B ^ x P Bq _ px R B ^ x R Cq

_ px P C ^ x P Bq _ px P C ^ x R Cq
˘

ô x P A^
`

px R B ^ x R Cq _ px P C ^ x P Bq
˘

ô px P A^ x R B ^ x R Cq _ px P A^ x P C ^ x P Bq

From line 3 to line 4 as well as from line 6 to line 7 we used the distributive
property of the logical “and ” with respect to the logical “or”.

Putting the two parts back together, we have

x P A△pB△Cq

ô px R A^ x P B ^ x R Cq _ px R A^ x R B ^ x P Cq

_ px P A^ x R B ^ x R Cq _ px P A^ x P C ^ x P Bq

This last line the the translation into logic from the above Venn diagram.

By following the exact same steps for pA△Bq△C, we obtain exactly the same
final expression and conclude that

A△pB△Cq “ pA△Bq△C.

(V2) We have
∅` A “ pAY∅q∖ pAX∅q “ A.

(V3) We see that
A` A “ pAY Aq∖ pAX Aq “ A∖ A “ ∅.

(V4) We see that

A`B “ pAYBq∖ pAXBq “ pB Y Aq∖ pB X Aq “ B ` A.

(V5) We have

p0 ¨ 0q ¨ A “ 0 ¨ A “ ∅ “ 0 ¨∅ “ 0 ¨ p0 ¨ Aq

p0 ¨ 1q ¨ A “ 0 ¨ A “ ∅ “ 0 ¨ p1 ¨ Aq

p1 ¨ 1q ¨ A “ 1 ¨ A “ A “ 1 ¨ p1 ¨ Aq.

The rest of the cases are proved by the commutativity of F2.

(V6) It holds by definition.
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(V7) We have

0 ¨ pA`Bq “ ∅ “ ∅`∅ “ 0 ¨ A` 0 ¨B

1 ¨ pA`Bq “ A`B “ p1 ¨ Aq ` p1 ¨Bq.

(V8) We have

p0` 0q ¨ A “ 0 ¨ A “ ∅ “ ∅`∅ “ 0 ¨ A` 0 ¨ A

p1` 0q ¨ A “ 1 ¨ A “ A “ A`∅ “ 1 ¨ A` 0 ¨∅
p1` 1q ¨ A “ 0 ¨ A “ ∅ “ A` A “ 1 ¨ A` 1 ¨ A.

6. Let V be aK-vector space and let V1, V2.V3 Ď V be linear subspaces, none of which
is contained in another. Determine with proof if V1YV2YV3 is always, sometimes
or never a linear subspace of V .

Hint : Try different fields K to obtain examples.

Solution: Consider K2 and the subspaces

V1 :“

Bˆ

1
0

˙F

, V2 :“

Bˆ

0
1

˙F

, V3 :“

Bˆ

1
1

˙F

.

When K “ R, we have

ˆ

1
0

˙

P V1 and

ˆ

1
1

˙

P V3. However, their sum

ˆ

2
1

˙

is not

in V1 Y V2 Y V3. This yields an example where the union is not a linear subspace.

Now take K “ F2. Then

V1 Y V2 Y V3 “

"ˆ

0
0

˙

,

ˆ

1
0

˙

,

ˆ

0
1

˙

,

ˆ

1
1

˙*

.

This equals the whole of K2 and therefore it is a linear subspace.

Multiple Choice questions. Each question can admit several answers.

Question 1. Which of the following sets are linear subspaces of the given vector
spaces?

✓ tpx1, x2, x3q P R3 | 3x1 ` 5x2 ` 3x3 “ 0, 2x2 ` x3 “ 0u Ď R3

You saw in the lectures that sets of solutions of systems of homogeneous linear

equations are linear subspaces.

˝ tpx1, x2, x3q P R3 | x1 ` x2 ` x3 “ 3u Ď R3

It is not a linear subspace since p0, 0, 0q is not in it.
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˝ tpx1, x2q P R2 | x1 ą x2u Ď R2

It is not a linear subspace since multiplying any element by a negative scalar λ

reverses the inequality. Hence for any px1, x2q in the set, λpx1, x2q is not in the set

anymore.

✓ tp0, x, 2x, 3xq | x P Ru Ď R4

It is a linear subspace since for any v “ p0, x, 2x, 3xq, w “ p0, y, 2y, 3yq in the set
and any λ P R, we have

v ` λw “ p0, x ` λy, 2x ` 2λy, 3x ` 3λyq “ p0, z, 2z, 3zq,

for z “ x ` λy. Hence v ` λw stays in the set.

˝ tpx4, x3, x2, xq | x P Ru Ď R4

It is not a linear subspace. Note that v :“ p1, 1, 1, 1q lies in this set but that 2v

does not since there is no x P R such that 2 “ x4 “ x3 “ x2 “ x.

Question 2. Consider the set of pairs of positive real numbers R2
`. The addition

on R2
` is defined as follows:

ˆ

x1

x2

˙

`

ˆ

y1
y2

˙

:“

ˆ

x1y1
x2y2

˙

.

We now consider three different definitions of scalar multiplication, for a λ P R:

‚ λ

ˆ

x1

x2

˙

:“

ˆ

λx1

λx2

˙

‚ λ

ˆ

x1

x2

˙

:“

ˆ

eλx1

eλx2

˙

‚ λ

ˆ

x1

x2

˙

:“

ˆ

xλ
1

xλ
2

˙

According to which definition of scalar multiplication does R2
` with the addition

defined above become a R-vector space?

˝ First definition

No. If λ ă 0 then λ

ˆ

x1
x2

˙

R R2
`

˝ Second definition
No. Distributivity λpv ` wq “ λv ` λw is not verified.

✓ Third definition
It checks all of the axioms.
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