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1. Let m € R. Describe the solutions of the following system of equations depending

on m:
r+my = —3
mx+4y = 6

When is the set of solutions S a linear subspace of R?? Give a geometrical inter-
pretation of S depending on m.

Solution: We use Gauss elimination. We do not change the first row but we replace
the second row Ry by Ry — mR,. We obtain the equivalent system

rT+my = -3
4-—mPy = 6+3m = 3(m+2)

We now discuss the solutions depending on the value of m:
o If m ¢ {£2}, then 4 — m? does not vanish. Hence,

3(m + 2) 3(m+2) 3

YT e T 2+m)2-m) 2-m

Plugging it into the first equation, we find
6

= —-—
m— 2

The system therefore admits a unique solution, namely (%, ﬁ) Geome-

trically, this means that the two lines defined by the equations x + my = —3
and mz + 4y = 6 intersect in this point.

e If now m = 2, the last line becomes 0 = 12. Therefore the system doesn’t
admit any solution. Geometrically, this implies that the two lines are parallel
when m = 2.

e If m = —2, then the last line becomes 0 = 0 and the system is equivalent to
xr = —3 —my. We then have

S={(=3-my,y) |y eR}.

Geometrically, this implies that both equations define the same line when
m = —2.

In none of these cases is S € R? a linear subspace since it never contains 0 - .S =

{(0,0)}.



2. Which of the following sets are linear subspaces of the given vector spaces? What
changes when R is replaced by Fy in (b) and (c)?

()
(b)
(c)

Sl = {(l’l,l'g,l'g) S R3 ’ T1 = Ty = 2.’13'3} - R?)
Sy = {(x1, 1) e R? | 22 + 23 = 0} < R?
Szi={(u+ X)) eR? [y, A e R} € R?

Solution:

()
(b)

We see that S; is the set of solutions of a homogeneous linear system of
equations and thus a linear subspace.

The equation 27 + x5 = 0 has only the solution z; = x5 = 0 in R. Therefore,
we have Sy = {(0,0)} and thus it is a linear subspace.

If we consider the equation over Fy, the situation is different. For every \ € s,
we have

A=\

Hence, the equation defining Ss is equivalent to xy + x5 = 0 over Fy. As the
set of solutions of a homogenoues linear equation S; is a linear subspace of

F2.
The set S is not a linear subspace of R?, as for example (1,1) is contained
in it, but not the multiple

(=1)-(1,1) = (=1, 1),

as the square of any real number is positive.

Over Fy, we again use the identity A2 = \. For any z,y € 5, we define

A=y, p=2x—y.

Then (u + A\, A\) = (z,y), hence S3 = F3. In particular, it is also a linear
subspace.

3. Let K be a field in which 1 + 1 # 0 and consider the space

V =K¥ =Abb(K,K):={f: K — K}.

Recall from the lectures that it is a vector space when endowed with scalar mul-
tiplication, namely (« - f)(z) = af(z), Vo € K, Vz € K, and with point wise
addition, i.e. (f + g)(z) = f(x) + g(z), Vx € K.

Now let

‘/even = {fK—>K|f(—£C)=f($)VIEK},
Voad :={f: K > K| f(—x) = —f(x)Vz € K}.



Show that V.., and V,4, are linear subspaces of V', that
Vveven"i"/odd = {U—i-UJ ’ 'Ue‘/evena we‘/odd} =V
and that Viyen, N Voga = {0}.

Solution: First note that the function that vanishes everywhere belongs both sub-
sets, hence they are not empty. Now let f, g € V., and a € K. We have

VeeK: (f+a-g)(—x)=f(—z)+a-g(—z) = f(x) +a-g(x) = (f+a-g)(z).

Hence f+a-g € Ve, for all f, g € Veyen, for all a € K. This proves that Ve, is a
linear subspace of V.

Similarly, let f, g € V,qq and let a € K. Then,
(f +a-g)(=z) = —f(x) —a-g(z) = =(f +a-g)(z).

Hence V,44 is a linear subspace of V.

Assume now that f € V,gq N Voyen. Then, for all z € K

—f(x) = f(=z) = f(=),
which implies that we must have f(z) = 0 for all z € K since 1 + 1 # 0.
Finally, we show that V_,e, + Voaa = V. Let f € V and define

funla) 2= LD IC)
ot = 1O IC)

You can easily see that feyen € Veven, that foqq € V,oqq and that

f(ﬂf) = feven(x) + ded<x)'
This concludes the proof.

. Let o0 and —oo denote 2 distinct objects, neither of which is in R, Define an
addition and a scalar multiplication on V' := R u {o0} U {—oo} as follows: in R,
addition and multiplication are defined as usual. For t € R define

—wo ift <0, w ift <0,
too = 0 ift=0, t(—0)= 0 ift=0,
oo ift>0, —oo ift >0,
t+00=0w+t=0w, t+ (—0) = (—w) +t=—o0.

0+ 00 =00, (—0)+(-w0)=(-w), ©+(-w0)=(-w)+w0=0.
Is V' a vector space over R?

Solutions: We have (1—2)-00 = —1-00 = —oo but (1-00)+ (—2-00) = 00+ (—0) =
0 # —o0. So, axiom (V8) doesn’t hold and V' isn’t a vector space over R.
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5. Let X be a set and let P be its power set (this means that P is the set of all
subsets of X). For all A, B e P and for \ € Fy, define

AAB:=(AuB)~(AnB)

g, for A =0,
)\'A’:{ A, for A=1.

Show that (P, A\, -, &) is a Fa-vector space.
Solution: Throughout, let A, B, C' € P and s,t € F5. We carefully check the axioms.

(V1) We can get intuition for associativity using Venn diagrams. We obtain the
following picture:

Abbildung 1: Symmetric difference of 3 sets

Let us now prove it. Let x € AA(BAC). We then have

r € ANBAC)

< (xeAArx¢ BAC)v (x¢ Anxe BAC)

e [zeAr—((xeBrz¢C)v(z¢Brzel))]
V[z¢ AN ((zeBAz¢C)v(z¢ Brzel))]

We split the last expression above into the two parts delimited by square
brackets and simplify them individually. The second one can be written as

(x¢ ArnzeBnrx¢C)v(ireAnax¢ Brazel)

by distributing the logical “and ” inside the parentheses.



On the other hand, for the first part

teAn—((zeBrz¢C)v(z¢Brael))
teAN(~(zeBrz¢C)A—(z¢ Brzel))
teAn((x¢gBvaeC)ar(reBvag¢l))
reAN((z¢BrzeB)v(z¢Barzg¢)
v(iceCnrzeB)v(zeCnrzg¢l))

< z€An((z¢Braz¢C)v(zeC rzeB))

< (reArax¢Brx¢lC)v(ireArzeC AnxeB)

0

0

0

From line 3 to line 4 as well as from line 6 to line 7 we used the distributive
property of the logical “and ” with respect to the logical “or”.

Putting the two parts back together, we have

r e AN(BAC)
< (x¢ArzeBrx¢C)v(ir¢egArxz¢g Bnraxel)
vireArz¢Barz¢(C)v(zre ArnzeC AnzeDB)

This last line the the translation into logic from the above Venn diagram.

By following the exact same steps for (AAB)AC, we obtain exactly the same
final expression and conclude that

AA(BAC) = (AAB)AC.

(V2) We have
g+ A=(Av@)\N(An)=A

(V3) We see that
A+ A=(AVAN(AnA)=ANA=0.

(V4) We see that
A+B=(AuB)N(AnB)=(BUA)~N(BnA)=B+ A.

(V5) We have

0-0)-A=0-A=2=0-2=0-(0-A)
0-1)-A=0-A=2=0-(1-A)
(1-1)-A=1-A=A=1-(1-A).

The rest of the cases are proved by the commutativity of F.
(V6) It holds by definition.



(V7) We have

0-(A+B)=0=0+20=0-A+0-B
1-(A+B)=A+B=(1-A)+(1-B).

—~

(V8) We have

04+40)-A=0-A=0=0+2=0-A+0-A4A
(1+0)-A=1-A=A=A+2=1-A+0-0
(1+1)-A=0-A=0=A4+A=1-A+1-A

6. Let V be a K-vector space and let Vi, V5.V3 € V be linear subspaces, none of which
is contained in another. Determine with proof if V7 U V5 U V3 is always, sometimes
or never a linear subspace of V.

Hint: Try different fields K to obtain examples.

Solution: Consider K? and the subspaces

i (0) e (6)) = 6))

é) e V] and <1> € V3. However, their sum <?> is not

in V7 u V5 U V3. This yields an example where the union is not a linear subspace.

Now take K = [F5. Then

This equals the whole of K? and therefore it is a linear subspace.

When K = R, we have (

Multiple Choice questions. Each question can admit several answers.

Question 1. Which of the following sets are linear subspaces of the given vector
spaces?

v {(Z’l,xg,xg) S R?) | 3I1 + 5$2 + 31’3 = 0, 21’2 + 3 = 0} - RS
You saw in the lectures that sets of solutions of systems of homogeneous linear
equations are linear subspaces.

o {(x1,m9,23) ER3 | 21 + 19 + 23 =3} = R?
It is not a linear subspace since (0,0, 0) is not in it.



o {(x1,79) € R? | 11 > 22} < R?
It is not a linear subspace since multiplying any element by a negative scalar A
reverses the inequality. Hence for any (z1,z2) in the set, A\(x1,x2) is not in the set
anymore.

v {(0,2,22,37) | v € R} € R*
It is a linear subspace since for any v = (0, z, 2z, 3z), w = (0,y, 2y, 3y) in the set
and any A € R, we have

v+ Aw = (0,2 + Ay, 2z + 2\y, 3z + 3\y) = (0, 2, 22, 32),

for z = x + \y. Hence v + Aw stays in the set.

o {(x*, 23, 2% x) | ze R} c R?
It is not a linear subspace. Note that v := (1,1,1,1) lies in this set but that 2v

does not since there is no z € R such that 2 = 2% = 2% = 22 = 2.

Question 2. Consider the set of pairs of positive real numbers R%. The addition

on R? is defined as follows:
<$1> <yl> : (iﬂlyl) .
T2 Y2 T2Y2

We now consider three different definitions of scalar multiplication, for a A € R:
iy . )\1’1
()= (0)
A
() ()
i) € To
A
()= ()

According to which definition of scalar multiplication does R% with the addition
defined above become a R-vector space?

o First definition
No. If A < 0 then A (f) ¢ R2
2
o Second definition
No. Distributivity A(v + w) = Av + Aw is not verified.

v Third definition

It checks all of the axioms.



