Musterlösung Serie 4

1. Let $m \in \mathbb{R}$. Describe the solutions of the following system of equations depending on m :

$$
\left\{\begin{array}{rlc}
x+m y & = & -3 \\
m x+4 y & =6
\end{array}\right.
$$

When is the set of solutions S a linear subspace of \mathbb{R}^{2} ? Give a geometrical interpretation of S depending on m.

Solution: We use Gauss elimination. We do not change the first row but we replace the second row R_{2} by $R_{2}-m R_{1}$. We obtain the equivalent system

$$
\left\{\begin{aligned}
x+m y & =-3 \\
\left(4-m^{2}\right) y & =6+3 m=3(m+2)
\end{aligned}\right.
$$

We now discuss the solutions depending on the value of m :

- If $m \notin\{ \pm 2\}$, then $4-m^{2}$ does not vanish. Hence,

$$
y=\frac{3(m+2)}{4-m^{2}}=\frac{3(m+2)}{(2+m)(2-m)}=\frac{3}{2-m}
$$

Plugging it into the first equation, we find

$$
x=\frac{6}{m-2} .
$$

The system therefore admits a unique solution, namely $\left(\frac{-6}{2-m}, \frac{3}{2-m}\right)$. Geometrically, this means that the two lines defined by the equations $x+m y=-3$ and $m x+4 y=6$ intersect in this point.

- If now $m=2$, the last line becomes $0=12$. Therefore the system doesn't admit any solution. Geometrically, this implies that the two lines are parallel when $m=2$.
- If $m=-2$, then the last line becomes $0=0$ and the system is equivalent to $x=-3-m y$. We then have

$$
S=\{(-3-m y, y) \mid y \in \mathbb{R}\} .
$$

Geometrically, this implies that both equations define the same line when $m=-2$.

In none of these cases is $S \subseteq \mathbb{R}^{2}$ a linear subspace since it never contains $0 \cdot S=$ $\{(0,0)\}$.
2. Which of the following sets are linear subspaces of the given vector spaces? What changes when \mathbb{R} is replaced by \mathbb{F}_{2} in (b) and (c)?
(a) $S_{1}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=x_{2}=2 x_{3}\right\} \subseteq \mathbb{R}^{3}$
(b) $S_{2}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{4}=0\right\} \subseteq \mathbb{R}^{2}$
(c) $S_{3}:=\left\{\left(\mu+\lambda, \lambda^{2}\right) \in \mathbb{R}^{2} \mid \mu, \lambda \in \mathbb{R}\right\} \subseteq \mathbb{R}^{2}$

Solution:

(a) We see that S_{1} is the set of solutions of a homogeneous linear system of equations and thus a linear subspace.
(b) The equation $x_{1}^{2}+x_{2}^{4}=0$ has only the solution $x_{1}=x_{2}=0$ in \mathbb{R}. Therefore, we have $S_{2}=\{(0,0)\}$ and thus it is a linear subspace.
If we consider the equation over \mathbb{F}_{2}, the situation is different. For every $\lambda \in \mathbb{F}_{2}$, we have

$$
\lambda^{2}=\lambda .
$$

Hence, the equation defining S_{2} is equivalent to $x_{1}+x_{2}=0$ over \mathbb{F}_{2}. As the set of solutions of a homogenoues linear equation S_{2} is a linear subspace of \mathbb{F}_{2}^{2}.
(c) The set S_{3} is not a linear subspace of \mathbb{R}^{2}, as for example $(1,1)$ is contained in it, but not the multiple

$$
(-1) \cdot(1,1)=(-1,-1)
$$

as the square of any real number is positive.
Over \mathbb{F}_{2}, we again use the identity $\lambda^{2}=\lambda$. For any $x, y \in \mathbb{F}_{2}$, we define

$$
\lambda=y, \mu=x-y
$$

Then $(\mu+\lambda, \lambda)=(x, y)$, hence $S_{3}=\mathbb{F}_{2}^{2}$. In particular, it is also a linear subspace.
3. Let K be a field in which $1+1 \neq 0$ and consider the space

$$
V=K^{K}=\operatorname{Abb}(K, K):=\{f: K \rightarrow K\} .
$$

Recall from the lectures that it is a vector space when endowed with scalar multiplication, namely $(\alpha \cdot f)(x)=\alpha f(x), \forall \alpha \in K, \forall x \in K$, and with point wise addition, i.e. $(f+g)(x)=f(x)+g(x), \forall x \in K$.
Now let

$$
\begin{aligned}
V_{\text {even }} & :=\{f: K \rightarrow K \mid f(-x)=f(x) \forall x \in K\}, \\
V_{\text {odd }} & :=\{f: K \rightarrow K \mid f(-x)=-f(x) \forall x \in K\} .
\end{aligned}
$$

Show that $V_{\text {even }}$ and $V_{\text {odd }}$ are linear subspaces of V, that

$$
V_{\text {even }}+V_{\text {odd }}:=\left\{v+w \mid v \in V_{\text {even }}, w \in V_{\text {odd }}\right\}=V
$$

and that $V_{\text {even }} \cap V_{\text {odd }}=\{0\}$.
Solution: First note that the function that vanishes everywhere belongs both subsets, hence they are not empty. Now let $f, g \in V_{\text {even }}$ and $a \in K$. We have

$$
\forall x \in K:(f+a \cdot g)(-x)=f(-x)+a \cdot g(-x)=f(x)+a \cdot g(x)=(f+a \cdot g)(x) .
$$

Hence $f+a \cdot g \in V_{\text {even }}$ for all $f, g \in V_{\text {even }}$, for all $a \in K$. This proves that $V_{\text {even }}$ is a linear subspace of V.
Similarly, let $f, g \in V_{\text {odd }}$ and let $a \in K$. Then,

$$
(f+a \cdot g)(-x)=-f(x)-a \cdot g(x)=-(f+a \cdot g)(x)
$$

Hence $V_{o d d}$ is a linear subspace of V.
Assume now that $f \in V_{\text {odd }} \cap V_{\text {even }}$. Then, for all $x \in K$

$$
-f(x)=f(-x)=f(x)
$$

which implies that we must have $f(x)=0$ for all $x \in K$ since $1+1 \neq 0$.
Finally, we show that $V_{\text {even }}+V_{\text {odd }}=V$. Let $f \in V$ and define

$$
\begin{aligned}
f_{\text {even }}(x) & :=\frac{f(x)+f(-x)}{2} \\
f_{\text {odd }}(x) & :=\frac{f(x)-f(-x)}{2} .
\end{aligned}
$$

You can easily see that $f_{\text {even }} \in V_{\text {even }}$, that $f_{\text {odd }} \in V_{\text {odd }}$ and that

$$
f(x)=f_{\text {even }}(x)+f_{\text {odd }}(x)
$$

This concludes the proof.
4. Let ∞ and $-\infty$ denote 2 distinct objects, neither of which is in \mathbb{R}, Define an addition and a scalar multiplication on $V:=\mathbb{R} \cup\{\infty\} \cup\{-\infty\}$ as follows: in \mathbb{R}, addition and multiplication are defined as usual. For $t \in \mathbb{R}$ define

$$
\begin{gathered}
t \infty=\left\{\begin{array}{cc}
-\infty & \text { if } t<0, \\
0 & \text { if } t=0, \\
\infty & \text { if } t>0,
\end{array} \quad t(-\infty)=\left\{\begin{array}{cc}
\infty & \text { if } t<0, \\
0 & \text { if } t=0, \\
-\infty & \text { if } t>0,
\end{array}\right.\right. \\
t+\infty=\infty+t=\infty, \quad t+(-\infty)=(-\infty)+t=-\infty . \\
\infty+\infty=\infty, \quad(-\infty)+(-\infty)=(-\infty), \quad \infty+(-\infty)=(-\infty)+\infty=0 .
\end{gathered}
$$

Is V a vector space over \mathbb{R} ?
Solutions: We have $(1-2) \cdot \infty=-1 \cdot \infty=-\infty$ but $(1 \cdot \infty)+(-2 \cdot \infty)=\infty+(-\infty)=$ $0 \neq-\infty$. So, axiom (V8) doesn't hold and V isn't a vector space over \mathbb{R}.
5. Let X be a set and let P be its power set (this means that P is the set of all subsets of X). For all $A, B \in P$ and for $\lambda \in \mathbb{F}_{2}$, define

$$
\begin{aligned}
A \triangle B & :=(A \cup B) \backslash(A \cap B) \\
\lambda \cdot A & := \begin{cases}\varnothing, & \text { for } \lambda=0, \\
A, & \text { for } \lambda=1 .\end{cases}
\end{aligned}
$$

Show that $(P, \triangle, \cdot, \varnothing)$ is a \mathbb{F}_{2}-vector space.
Solution: Throughout, let $A, B, C \in P$ and $s, t \in \mathbb{F}_{2}$. We carefully check the axioms.
(V1) We can get intuition for associativity using Venn diagrams. We obtain the following picture:

Abbildung 1: Symmetric difference of 3 sets
Let us now prove it. Let $x \in A \triangle(B \triangle C)$. We then have

$$
\begin{array}{ll}
& x \in A \triangle(B \triangle C) \\
\Leftrightarrow & (x \in A \wedge x \notin B \triangle C) \vee(x \notin A \wedge x \in B \triangle C) \\
\Leftrightarrow & {[x \in A \wedge \neg((x \in B \wedge x \notin C) \vee(x \notin B \wedge x \in C))]} \\
& \vee[x \notin A \wedge((x \in B \wedge x \notin C) \vee(x \notin B \wedge x \in C))]
\end{array}
$$

We split the last expression above into the two parts delimited by square brackets and simplify them individually. The second one can be written as

$$
(x \notin A \wedge x \in B \wedge x \notin C) \vee(x \notin A \wedge x \notin B \wedge x \in C)
$$

by distributing the logical "and " inside the parentheses.

On the other hand, for the first part

$$
\begin{aligned}
& x \in A \wedge \neg((x \in B \wedge x \notin C) \vee(x \notin B \wedge x \in C)) \\
\Leftrightarrow & x \in A \wedge(\neg(x \in B \wedge x \notin C) \wedge \neg(x \notin B \wedge x \in C)) \\
\Leftrightarrow & x \in A \wedge((x \notin B \vee x \in C) \wedge(x \in B \vee x \notin C)) \\
\Leftrightarrow & x \in A \wedge((x \notin B \wedge x \in B) \vee(x \notin B \wedge x \notin C) \\
& \vee(x \in C \wedge x \in B) \vee(x \in C \wedge x \notin C)) \\
\Leftrightarrow & x \in A \wedge((x \notin B \wedge x \notin C) \vee(x \in C \wedge x \in B)) \\
\Leftrightarrow & (x \in A \wedge x \notin B \wedge x \notin C) \vee(x \in A \wedge x \in C \wedge x \in B)
\end{aligned}
$$

From line 3 to line 4 as well as from line 6 to line 7 we used the distributive property of the logical "and " with respect to the logical "or".
Putting the two parts back together, we have

$$
\begin{aligned}
& x \in A \triangle(B \triangle C) \\
\Leftrightarrow & (x \notin A \wedge x \in B \wedge x \notin C) \vee(x \notin A \wedge x \notin B \wedge x \in C) \\
& \vee(x \in A \wedge x \notin B \wedge x \notin C) \vee(x \in A \wedge x \in C \wedge x \in B)
\end{aligned}
$$

This last line the the translation into logic from the above Venn diagram.
By following the exact same steps for $(A \triangle B) \triangle C$, we obtain exactly the same final expression and conclude that

$$
A \triangle(B \triangle C)=(A \triangle B) \triangle C
$$

(V2) We have

$$
\varnothing+A=(A \cup \varnothing) \backslash(A \cap \varnothing)=A
$$

(V3) We see that

$$
A+A=(A \cup A) \backslash(A \cap A)=A \backslash A=\varnothing .
$$

(V4) We see that

$$
A+B=(A \cup B) \backslash(A \cap B)=(B \cup A) \backslash(B \cap A)=B+A
$$

(V5) We have

$$
\begin{aligned}
& (0 \cdot 0) \cdot A=0 \cdot A=\varnothing=0 \cdot \varnothing=0 \cdot(0 \cdot A) \\
& (0 \cdot 1) \cdot A=0 \cdot A=\varnothing=0 \cdot(1 \cdot A) \\
& (1 \cdot 1) \cdot A=1 \cdot A=A=1 \cdot(1 \cdot A) .
\end{aligned}
$$

The rest of the cases are proved by the commutativity of \mathbb{F}_{2}.
(V6) It holds by definition.
(V7) We have

$$
\begin{aligned}
& 0 \cdot(A+B)=\varnothing=\varnothing+\varnothing=0 \cdot A+0 \cdot B \\
& 1 \cdot(A+B)=A+B=(1 \cdot A)+(1 \cdot B)
\end{aligned}
$$

(V8) We have

$$
\begin{aligned}
& (0+0) \cdot A=0 \cdot A=\varnothing=\varnothing+\varnothing=0 \cdot A+0 \cdot A \\
& (1+0) \cdot A=1 \cdot A=A=A+\varnothing=1 \cdot A+0 \cdot \varnothing \\
& (1+1) \cdot A=0 \cdot A=\varnothing=A+A=1 \cdot A+1 \cdot A .
\end{aligned}
$$

6. Let V be a K-vector space and let $V_{1}, V_{2}, V_{3} \subseteq V$ be linear subspaces, none of which is contained in another. Determine with proof if $V_{1} \cup V_{2} \cup V_{3}$ is always, sometimes or never a linear subspace of V.
Hint: Try different fields K to obtain examples.
Solution: Consider K^{2} and the subspaces

$$
V_{1}:=\left\langle\binom{ 1}{0}\right\rangle, V_{2}:=\left\langle\binom{ 0}{1}\right\rangle, V_{3}:=\left\langle\binom{ 1}{1}\right\rangle .
$$

When $K=\mathbb{R}$, we have $\binom{1}{0} \in V_{1}$ and $\binom{1}{1} \in V_{3}$. However, their sum $\binom{2}{1}$ is not in $V_{1} \cup V_{2} \cup V_{3}$. This yields an example where the union is not a linear subspace.
Now take $K=\mathbb{F}_{2}$. Then

$$
V_{1} \cup V_{2} \cup V_{3}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\} .
$$

This equals the whole of K^{2} and therefore it is a linear subspace.

Multiple Choice questions. Each question can admit several answers.
Question 1. Which of the following sets are linear subspaces of the given vector spaces?

$$
\checkmark\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid 3 x_{1}+5 x_{2}+3 x_{3}=0,2 x_{2}+x_{3}=0\right\} \subseteq \mathbb{R}^{3}
$$

You saw in the lectures that sets of solutions of systems of homogeneous linear equations are linear subspaces.

- $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=3\right\} \subseteq \mathbb{R}^{3}$

It is not a linear subspace since $(0,0,0)$ is not in it.

- $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}>x_{2}\right\} \subseteq \mathbb{R}^{2}$

It is not a linear subspace since multiplying any element by a negative scalar λ reverses the inequality. Hence for any $\left(x_{1}, x_{2}\right)$ in the set, $\lambda\left(x_{1}, x_{2}\right)$ is not in the set anymore.
$\checkmark\{(0, x, 2 x, 3 x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^{4}$
It is a linear subspace since for any $v=(0, x, 2 x, 3 x), w=(0, y, 2 y, 3 y)$ in the set and any $\lambda \in \mathbb{R}$, we have

$$
v+\lambda w=(0, x+\lambda y, 2 x+2 \lambda y, 3 x+3 \lambda y)=(0, z, 2 z, 3 z),
$$

for $z=x+\lambda y$. Hence $v+\lambda w$ stays in the set.

- $\left\{\left(x^{4}, x^{3}, x^{2}, x\right) \mid x \in \mathbb{R}\right\} \subseteq \mathbb{R}^{4}$

It is not a linear subspace. Note that $v:=(1,1,1,1)$ lies in this set but that $2 v$ does not since there is no $x \in \mathbb{R}$ such that $2=x^{4}=x^{3}=x^{2}=x$.

Question 2. Consider the set of pairs of positive real numbers \mathbb{R}_{+}^{2}. The addition on \mathbb{R}_{+}^{2} is defined as follows:

$$
\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}:=\binom{x_{1} y_{1}}{x_{2} y_{2}} .
$$

We now consider three different definitions of scalar multiplication, for a $\lambda \in \mathbb{R}$:

- $\lambda\binom{x_{1}}{x_{2}}:=\binom{\lambda x_{1}}{\lambda x_{2}}$
- $\lambda\binom{x_{1}}{x_{2}}:=\binom{e^{\lambda} x_{1}}{e^{\lambda} x_{2}}$
- $\lambda\binom{x_{1}}{x_{2}}:=\binom{x_{1}^{\lambda}}{x_{2}^{\lambda}}$

According to which definition of scalar multiplication does \mathbb{R}_{+}^{2} with the addition defined above become a \mathbb{R}-vector space?

- First definition

No. If $\lambda<0$ then $\lambda\binom{x_{1}}{x_{2}} \notin \mathbb{R}_{+}^{2}$

- Second definition

No. Distributivity $\lambda(v+w)=\lambda v+\lambda w$ is not verified.

\checkmark Third definition

It checks all of the axioms.

