Musterlösung Serie 5

1. Polynomials. Consider the polynomials

$$
\begin{aligned}
& p_{1}(x)=x^{3}+x^{2} \\
& p_{2}(x)=x^{2}-2 x-4 \\
& p_{3}(x)=3 x+4 \\
& p_{4}(x)=2 x+3
\end{aligned}
$$

(a) Express the polynomial $2 x^{3}+3 x^{2}-1$ as a linear combination of the $p_{i}, i=$ $1,2,3,4$.
(b) Calculate the linear $\operatorname{span} \operatorname{Sp}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$.

Solution:

(a) We have

$$
2 x^{3}+3 x^{2}-1=2 p_{1}(x)+p_{2}(x)+p_{4}(x) .
$$

(b) We first note that $-2 p_{3}(x)+3 p_{4}(x)=1$. Moreover, $3 p_{3}(x)-4 p_{4}(x)=x$. It follows that

$$
x^{2}=p_{2}(x)+2\left(3 p_{3}(x)-4 p_{4}(x)\right)+4\left(-2 p_{3}(x)+3 p_{4}(x)\right)
$$

and finally that

$$
x^{3}=p_{1}(x)-p_{2}(x)-2\left(3 p_{3}(x)-4 p_{4}(x)\right)-4\left(-2 p_{3}(x)+3 p_{4}(x)\right)
$$

This shows that

$$
\left\{1, x, x^{2}, x^{3}\right\} \subseteq \operatorname{Sp}\left(p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right) .
$$

So, by minimality of the span and since the right-hand side is linear,

$$
\operatorname{Sp}\left(1, x, x^{2}, x^{3}\right) \subseteq \operatorname{Sp}\left(p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right)
$$

On the other hand, since $\operatorname{deg}(p) \leqslant 3$ for all $p \in \operatorname{Sp}\left(p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right)$ (see the solution to exercise 5 for more details), we have

$$
\begin{aligned}
& \operatorname{Sp}\left(p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right) \subseteq P_{3}(\mathbb{R}):=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leqslant 3\} \\
= & \operatorname{Sp}\left(1, x, x^{2}, x^{3}\right) .
\end{aligned}
$$

Therefore,

$$
\operatorname{Sp}\left(p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right)=P_{3}(\mathbb{R}) .
$$

2. Dimension 2. Let $v \in \mathbb{R}^{2} \backslash\{(0,0)\}$ and let $w \in \mathbb{R}^{2} \backslash\{(0,0)\}$ be such that $w \neq \alpha v$ for all $\alpha \in \mathbb{R}$.
(a) Show that $\operatorname{Sp}(v, w)=\mathbb{R}^{2}$.
(b) Show that the only subspaces of \mathbb{R}^{2} are $\{(0,0)\}, \operatorname{Sp}(v)$ for all $v \in \mathbb{R}^{2}$, and \mathbb{R}^{2}.

Solution:

(a) We write

$$
v=\binom{a}{b}, \quad w=\binom{c}{d} .
$$

We want to show that for any $(\alpha, \beta) \in \mathbb{R}^{2}$, there exists $(x, y) \in \mathbb{R}^{2}$ so that

$$
x v+y w=\binom{\alpha}{\beta} .
$$

This amounts to showing that the linear system given by

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \cdot\binom{x}{y}=\binom{\alpha}{\beta}
$$

always admit a solution (x, y). We show it using Gauss reduction.
Without loss of generality, we can assume that $a \neq 0$. Indeed, if $a=0$, simply switch the first row R_{1} with the second row R_{2} in the augmented matrix

$$
\left(\begin{array}{ll|l}
a & c & \alpha \\
b & d & \beta
\end{array}\right) .
$$

Then, since w is not proportional to v, we know that $b \neq 0$ and therefore we have obtained an augmented matrix whose upper right entry is non-zero for an equivalent system of equation.
So, assuming $a \neq 0$, replace R_{2} with $R_{2}-\frac{b}{a} R_{1}$. We obtain

$$
\left(\begin{array}{cc|c}
a & c & \alpha \\
0 & d-\frac{b}{a} c & \beta-\frac{b}{a} \alpha
\end{array}\right) .
$$

Note that $d-\frac{b}{a} c \neq 0$, otherwise $w=\frac{c}{a} v$. In order to simplify the notation, write

$$
c^{\prime}:=\frac{c}{a}, \quad \alpha^{\prime}:=\frac{\alpha}{a}, \quad \beta^{\prime}:=\frac{\beta-\frac{b}{a} \alpha}{d-\frac{b}{a} c} .
$$

We have obtained an equivalent system corresponding to the augmented matrix

$$
\left(\begin{array}{cc|c}
1 & c^{\prime} & \alpha^{\prime} \\
0 & 1 & \beta^{\prime}
\end{array}\right)
$$

Solving it, we conclude that a solution indeed exists. It is given by $x=$ $\alpha^{\prime}-c^{\prime} \beta^{\prime}, y=\beta^{\prime}$.
(b) The three types of subsets listed above are clearly subspaces. Assume that there exists some subspace $U \subseteq \mathbb{R}^{2}$ that is not of any of these forms. Then $U \neq$ $\{(0,0)\}$ and U contains at least 2 non-zero vectors that are not proportional. But then $U=\mathbb{R}^{2}$ by (a), which is a contradiction.
3. Subvectorspaces. Do the operations + and \cap on subvectorspaces satisfy distributivity? In other words, do the following equations hold for all linear subspaces?

$$
\begin{aligned}
& U \cap\left(V_{1}+V_{2}\right)=\left(U \cap V_{1}\right)+\left(U \cap V_{2}\right) \\
& U+\left(V_{1} \cap V_{2}\right)=\left(U+V_{1}\right) \cap\left(U+V_{2}\right)
\end{aligned}
$$

If not, is at least one inclusion satisfied?
Recall that for two subspaces V_{1} and V_{2} of a vector space V,

$$
V_{1}+V_{2}=\left\{u+v \mid u \in V_{1}, v \in V_{2}\right\} .
$$

Solution: For each $i=1,2$, we have $V_{i} \subset V_{1}+V_{2}$ and thus $U \cap V_{i} \subset U \cap\left(V_{1}+V_{2}\right)$. As $U \cap\left(V_{1}+V_{2}\right)$ is a subvectorspace, we get

$$
\left(U \cap V_{1}\right)+\left(U \cap V_{2}\right) \subset U \cap\left(V_{1}+V_{2}\right) .
$$

Moreover, we have $V_{1} \cap V_{2} \subset V_{i}$ and thus $U+\left(V_{1} \cap V_{2}\right) \subset U+V_{i}$, which implies

$$
U+\left(V_{1} \cap V_{2}\right) \subset\left(U+V_{1}\right) \cap\left(U+V_{2}\right) .
$$

However, the other inclusion is false in both cases: For the subvectorspaces $U:=$ $\langle(1,1)\rangle$ and $V_{1}:=\langle(1,0)\rangle$ and $V_{2}:=\langle(0,1)\rangle$ of K^{2} we have $U \cap V_{1}=U \cap V_{2}=$ $V_{1} \cap V_{2}=0$ and $U+V_{1}=U+V_{2}=V_{1}+V_{2}=K^{2}$ and hence

$$
\left(U \cap V_{1}\right)+\left(U \cap V_{2}\right)=0+0=0 \neq U=U \cap K^{2}=U \cap\left(V_{1}+V_{2}\right)
$$

and

$$
U+\left(V_{1} \cap V_{2}\right)=U+0=U \neq K^{2}=K^{2} \cap K^{2}=\left(U+V_{1}\right) \cap\left(U+V_{2}\right)
$$

4. Subspaces and equations. Let K be a field. Fix $x \in K^{n}$ and $b \in K^{m}$. Define

$$
U:=\left\{A \in M_{m \times n}(K) \mid A \cdot x=b\right\} .
$$

For which values of x and b is $U \subseteq M_{m \times n}(K)$ a linear subspace?
Solution: Let us denote U by $U_{x, b}$ to emphasize the dependence on the parameters. We first assume for a contradiction that $b \neq 0$ and that $U_{x, b}$ is a subspace of $M_{m \times n}(K)$. Then $0 \notin U_{x, b}$, which is a contradiction to (UVR3). Therefore $b=0$ is a necessary condition for $U_{x, b}$ to be a subvectorspace. So, we fix $b=0$ and denote $U_{0, x}=U_{x}$. Such a system of equations is called homogeneous.

We first check that for any fixed $x \in K^{n}, U_{x} \neq \varnothing$. That is clear since the matrix whose entries are all 0 belongs to U_{x}. This checks (UVR1) for U_{x}. Additionally, letting $A, B \in U_{x}$, we have

$$
(A+B) \cdot x=A \cdot x+B \cdot x=0
$$

Hence U_{x} verifies (UVR2). Finally, for any $\alpha \in \mathbb{R}$ and $A \in U_{x}$, we have

$$
(\alpha A) \cdot x=\alpha(A \cdot x)=0 .
$$

Hence U_{x} verifies (UVR3).
This proves that $b=0$ is a necessary and sufficient condition for $U_{x, b}$ to be a linear subspace.
5. Polynomials. Prove that $K[x]$ is not finite-dimensional over K.

Solution: We proceed by contradiction. Assume that it is finite-dimensional over K. Then there exists a finite set of polynomials

$$
E:=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{r}\right\} \subseteq K[x]
$$

such that $\operatorname{Sp}(E)=K[x]$, namely, for any $q \in K[x]$ there exist $a_{1}, \ldots, a_{r} \in K$ such that

$$
q(x)=\sum_{i=1}^{r} a_{i} p_{i}(x) .
$$

Let $D=\max _{1 \leqslant i \leqslant r}\left\{\operatorname{deg}\left(p_{i}\right)\right\}$. Since for any $p, p^{\prime} \in K[x]$

$$
\operatorname{deg}\left(p+p^{\prime}\right) \leqslant \max \left\{\operatorname{deg}(p), \operatorname{deg}\left(p^{\prime}\right)\right\}
$$

we can show by induction that for any $n \in \mathbb{N}_{\geqslant 1}$ and for any $m_{1}, \ldots, m_{n} \in K[x]$

$$
\operatorname{deg}\left(m_{1}+m_{2}+\cdots+m_{n}\right) \leqslant \max _{1 \leqslant i \leqslant n}\left\{\operatorname{deg}\left(m_{i}\right)\right\}
$$

Hence, for any $a_{1}, \ldots, a_{r} \in K$

$$
\operatorname{deg}\left(\sum_{i=1}^{r} a_{i} p_{i}(x)\right) \leqslant D
$$

Taking $q \in K[x]$ with $\operatorname{deg}(q)>D$ such that $q(x)=\sum_{i=1}^{r} a_{i} p_{i}(x)$, we obtain a contradiction since then

$$
\operatorname{deg}(q)=\operatorname{deg}\left(\sum_{i=1}^{r} a_{i} p_{i}(x)\right) \leqslant D<\operatorname{deg}(q) .
$$

6. Sequences.

(a) Let K_{0}^{∞} be the set of finitely-supported sequences, i.e.

$$
K_{0}^{\infty}=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right) \mid \forall i \in \mathbb{N} a_{i} \in K \wedge \exists N \geqslant 0: \forall n \geqslant N a_{n}=0\right\} .
$$

Write the smallest (with respect to inclusion) generating subset $E \subsetneq K_{0}^{\infty}$ that you can think of and justify your answer.
(b) Do the same for

$$
K_{c s t}^{\infty}:=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right) \mid \forall i \in \mathbb{N} a_{i} \in K \wedge \exists c \in K \exists N \geqslant 0: \forall n \geqslant N a_{n}=c\right\},
$$

the set of eventually constant sequences.

Solution:

(a) An example of such a minimal generating subset is the set

$$
\left\{a^{(i)}=\left(a_{0}^{(i)}, a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{n}^{(i)}, \ldots\right) \mid 0 \leqslant i\right\}
$$

where

$$
a_{j}^{(i)}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

This is clearly a subset of K_{0}^{∞}. We check that it is a generating subset. Let the sequence

$$
a=\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in K_{0}^{\infty}
$$

and let $N \geqslant 0$ be the index such that $a_{n}=0 \forall n \geqslant N$. Then

$$
a=a_{0} a^{(0)}+a_{1} a^{(1)}+\cdots+a_{N-1} a^{(N-1)} .
$$

This shows that $\left\{a^{(i)} \mid i \geqslant 0\right\}$ is indeed a generating set.
Now assume that $B \subsetneq\left\{a^{(i)} \mid i \geqslant 0\right\}$. Then there exists $r \geqslant 0$ such that $a^{(r)} \notin B$. So, the element with index r vanishes for any linear combination of elements of B. Hence $a^{(r)} \in K_{0}^{\infty} \backslash \operatorname{Sp}(B)$, which means that B is not a generating set for any $B \subsetneq\left\{a^{(i)} \mid i \geqslant 0\right\}$.
(b) An example in this case is

$$
\left\{b^{(i)}=\left(b_{0}^{(i)}, b_{1}^{(i)}, b_{2}^{(i)}, \ldots, b_{n}^{(i)}, \ldots\right) \mid 0 \leqslant i\right\}
$$

where

$$
b_{j}^{(i)}= \begin{cases}1, & \text { if } i \leqslant j \\ 0, & \text { otherwise }\end{cases}
$$

Another such set could be the set described in (a) to which we add the element

$$
(1,1,1, \cdots, 1, \cdots)
$$

We show that $\left\{b^{(i)} \mid i \geqslant 0\right\}$ is a minimal generating set. Let

$$
a=\left(a_{0}, a_{1}, a_{2}, \cdots\right) \in K_{c s t}^{\infty}
$$

and let $N \geqslant 0$ be the index such that $a_{n}=c \in K, \forall n \geqslant N$. We define

$$
c_{i}:=\left\{\begin{array}{cc}
a_{0}, & i=0 \\
a_{i}-a_{i-1}, & 1 \leqslant i \leqslant N
\end{array}\right.
$$

Then,

$$
\sum_{0 \leqslant i \leqslant N} c_{i} b^{(i)}=b .
$$

Now assume that $B \subsetneq\left\{b^{(i)} \mid i \geqslant 0\right\}$. Then $b^{(r)} \notin B$ for some $r \geqslant 0$. Now, letting $N \in \mathbb{N}$ arbitrary and $\left\{\alpha_{i} \mid 0 \leqslant i \leqslant N\right\} \subset K$ with $\alpha_{N} \neq 0$ (otherwise we remove any vanishing element whose index is bigger so that the α_{i} with the greatest index is non-zero), set

$$
d=\sum_{i=0}^{N} \alpha_{i} b^{(i)},
$$

where the primed sum indicates that we omit the index r in the summation whenever $N \geqslant r$. The constant tail of d is equal to $\sum_{i=0}^{N} \alpha_{i}$ and starts at index N. Hence we cannot obtain $b^{(r)}$ with any such combination since its constant tail starts at index r. This shows that

$$
\mathrm{Sp}(B) \subsetneq K_{c s t}^{\infty}
$$

for any $B \subsetneq\left\{b^{(i)} \mid i \geqslant 0\right\}$.

