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Musterlösung Serie 5

1. Polynomials. Consider the polynomials

p1pxq “ x3
` x2

p2pxq “ x2
´ 2x ´ 4

p3pxq “ 3x ` 4

p4pxq “ 2x ` 3

(a) Express the polynomial 2x3 ` 3x2 ´ 1 as a linear combination of the pi, i “

1, 2, 3, 4.

(b) Calculate the linear span Sppp1, p2, p3, p4q.

Solution:

(a) We have
2x3

` 3x2
´ 1 “ 2p1pxq ` p2pxq ` p4pxq.

(b) We first note that ´2p3pxq ` 3p4pxq “ 1. Moreover, 3p3pxq´ 4p4pxq “ x. It
follows that

x2
“ p2pxq ` 2 p3p3pxq ´ 4p4pxqq ` 4 p´2p3pxq ` 3p4pxqq

and finally that

x3
“ p1pxq ´ p2pxq ´ 2 p3p3pxq ´ 4p4pxqq ´ 4 p´2p3pxq ` 3p4pxqq

This shows that
␣

1, x, x2, x3
(

Ď Sppp1pxq, p2pxq, p3pxq, p4pxqq.

So, by minimality of the span and since the right-hand side is linear,

Spp1, x, x2, x3
q Ď Sppp1pxq, p2pxq, p3pxq, p4pxqq.

On the other hand, since degppq ď 3 for all p P Sppp1pxq, p2pxq, p3pxq, p4pxqq

(see the solution to exercise 5 for more details), we have

Sppp1pxq, p2pxq, p3pxq, p4pxqq Ď P3pRq :“ tp P Rrxs | degppq ď 3u

“ Spp1, x, x2, x3
q.

Therefore,
Sppp1pxq, p2pxq, p3pxq, p4pxqq “ P3pRq.
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2. Dimension 2. Let v P R2∖ tp0, 0qu and let w P R2∖ tp0, 0qu be such that w ‰ αv
for all α P R.

(a) Show that Sppv, wq “ R2.

(b) Show that the only subspaces of R2 are tp0, 0qu, Sppvq for all v P R2, and R2.

Solution:

(a) We write

v “

ˆ

a
b

˙

, w “

ˆ

c
d

˙

.

We want to show that for any pα, βq P R2, there exists px, yq P R2 so that

xv ` yw “

ˆ

α
β

˙

.

This amounts to showing that the linear system given by
ˆ

a c
b d

˙

¨

ˆ

x
y

˙

“

ˆ

α
β

˙

always admit a solution px, yq. We show it using Gauss reduction.

Without loss of generality, we can assume that a ‰ 0. Indeed, if a “ 0, simply
switch the first row R1 with the second row R2 in the augmented matrix

ˆ

a c α
b d β

˙

.

Then, since w is not proportional to v, we know that b ‰ 0 and therefore we
have obtained an augmented matrix whose upper right entry is non-zero for
an equivalent system of equation.

So, assuming a ‰ 0, replace R2 with R2 ´ b
a
R1. We obtain

ˆ

a c α
0 d ´ b

a
c β ´ b

a
α

˙

.

Note that d ´ b
a
c ‰ 0, otherwise w “ c

a
v. In order to simplify the notation,

write

c1 :“
c

a
, α1 :“

α

a
, β1 :“

β ´ b
a
α

d ´ b
a
c
.

We have obtained an equivalent system corresponding to the augmented ma-
trix

ˆ

1 c1 α1

0 1 β1

˙

.

Solving it, we conclude that a solution indeed exists. It is given by x “

α1 ´ c1β1, y “ β1.
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(b) The three types of subsets listed above are clearly subspaces. Assume that
there exists some subspace U Ď R2 that is not of any of these forms. Then U ‰

tp0, 0qu and U contains at least 2 non-zero vectors that are not proportional.
But then U “ R2 by (a), which is a contradiction.

3. Subvectorspaces. Do the operations ` and X on subvectorspaces satisfy distri-
butivity? In other words, do the following equations hold for all linear subspaces?

U X pV1 ` V2q “ pU X V1q ` pU X V2q

U ` pV1 X V2q “ pU ` V1q X pU ` V2q

If not, is at least one inclusion satisfied?

Recall that for two subspaces V1 and V2 of a vector space V ,

V1 ` V2 “ tu ` v | u P V1, v P V2u.

Solution: For each i “ 1, 2, we have Vi Ă V1 `V2 and thus U XVi Ă U X pV1 ` V2q .
As U X pV1 ` V2q is a subvectorspace, we get

pU X V1q ` pU X V2q Ă U X pV1 ` V2q .

Moreover, we have V1 X V2 Ă Vi and thus U ` pV1 X V2q Ă U ` Vi, which implies

U ` pV1 X V2q Ă pU ` V1q X pU ` V2q .

However, the other inclusion is false in both cases: For the subvectorspaces U :“
xp1, 1qy and V1 :“ xp1, 0qy and V2 :“ xp0, 1qy of K2 we have U X V1 “ U X V2 “

V1 X V2 “ 0 and U ` V1 “ U ` V2 “ V1 ` V2 “ K2 and hence

pU X V1q ` pU X V2q “ 0 ` 0 “ 0 ‰ U “ U X K2
“ U X pV1 ` V2q

and

U ` pV1 X V2q “ U ` 0 “ U ‰ K2
“ K2

X K2
“ pU ` V1q X pU ` V2q

4. Subspaces and equations. Let K be a field. Fix x P Kn and b P Km. Define

U :“ tA P MmˆnpKq | A ¨ x “ bu.

For which values of x and b is U Ď MmˆnpKq a linear subspace?

Solution: Let us denote U by Ux,b to emphasize the dependence on the parameters.
We first assume for a contradiction that b ‰ 0 and that Ux,b is a subspace of
MmˆnpKq. Then 0 R Ux,b, which is a contradiction to (UVR3). Therefore b “ 0 is
a necessary condition for Ux,b to be a subvectorspace. So, we fix b “ 0 and denote
U0,x “ Ux. Such a system of equations is called homogeneous.

3



We first check that for any fixed x P Kn, Ux ‰ ∅. That is clear since the matrix
whose entries are all 0 belongs to Ux. This checks (UVR1) for Ux. Additionally,
letting A,B P Ux, we have

pA ` Bq ¨ x “ A ¨ x ` B ¨ x “ 0.

Hence Ux verifies (UVR2). Finally, for any α P R and A P Ux, we have

pαAq ¨ x “ αpA ¨ xq “ 0.

Hence Ux verifies (UVR3).

This proves that b “ 0 is a necessary and sufficient condition for Ux,b to be a linear
subspace.

5. Polynomials. Prove that Krxs is not finite-dimensional over K.

Solution: We proceed by contradiction. Assume that it is finite-dimensional over
K. Then there exists a finite set of polynomials

E :“ tp1, p2, p3, . . . , pru Ď Krxs

such that SppEq “ Krxs, namely, for any q P Krxs there exist a1, . . . , ar P K such
that

qpxq “

r
ÿ

i“1

aipipxq.

Let D “ max1ďiďrtdegppiqu. Since for any p, p1 P Krxs

degpp ` p1
q ď maxtdegppq, degpp1

qu,

we can show by induction that for any n P Ně1 and for any m1, . . . ,mn P Krxs

degpm1 ` m2 ` ¨ ¨ ¨ ` mnq ď max
1ďiďn

tdegpmiqu.

Hence, for any a1, . . . , ar P K

deg

˜

r
ÿ

i“1

aipipxq

¸

ď D.

Taking q P Krxs with degpqq ą D such that qpxq “
řr

i“1 aipipxq, we obtain a
contradiction since then

degpqq “ deg

˜

r
ÿ

i“1

aipipxq

¸

ď D ă degpqq.

6. Sequences.
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(a) Let K8
0 be the set of finitely-supported sequences, i.e.

K8
0 “ tpa0, a1, a2, . . . , an, . . . q | @i P N ai P K ^ DN ě 0 : @n ě N an “ 0u.

Write the smallest (with respect to inclusion) generating subset E Ĺ K8
0 that

you can think of and justify your answer.

(b) Do the same for

K8
cst :“ tpa0, a1, a2, . . . , an, . . . q | @i P N ai P K^Dc P KDN ě 0 : @n ě N an “ cu,

the set of eventually constant sequences.

Solution:

(a) An example of such a minimal generating subset is the set

tapiq
“ pa

piq
0 , a

piq
1 , a

piq
2 , . . . , apiq

n , . . . q | 0 ď iu,

where

a
piq
j “

"

1, if i “ j
0, otherwise

This is clearly a subset of K8
0 . We check that it is a generating subset. Let

the sequence
a “ pa0, a1, a2, . . . q P K8

0

and let N ě 0 be the index such that an “ 0 @n ě N. Then

a “ a0a
p0q

` a1a
p1q

` ¨ ¨ ¨ ` aN´1a
pN´1q.

This shows that tapiq | i ě 0u is indeed a generating set.

Now assume that B Ĺ tapiq | i ě 0u. Then there exists r ě 0 such that
aprq R B. So, the element with index r vanishes for any linear combination
of elements of B. Hence aprq P K8

0 ∖ SppBq, which means that B is not a
generating set for any B Ĺ tapiq | i ě 0u.

(b) An example in this case is

tbpiq
“ pb

piq
0 , b

piq
1 , b

piq
2 , . . . , bpiq

n , . . . q | 0 ď iu,

where

b
piq
j “

"

1, if i ď j
0, otherwise

Another such set could be the set described in (a) to which we add the element

p1, 1, 1, ¨ ¨ ¨ , 1, ¨ ¨ ¨ q.
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We show that tbpiq | i ě 0u is a minimal generating set. Let

a “ pa0, a1, a2, ¨ ¨ ¨ q P K8
cst

and let N ě 0 be the index such that an “ c P K, @n ě N . We define

ci :“

"

a0, i “ 0
ai ´ ai´1, 1 ď i ď N

Then,
ÿ

0ďiďN

cib
piq

“ b.

Now assume that B Ĺ tbpiq | i ě 0u. Then bprq R B for some r ě 0. Now,
letting N P N arbitrary and tαi | 0 ď i ď Nu Ă K with αN ‰ 0 (otherwise
we remove any vanishing element whose index is bigger so that the αi with
the greatest index is non-zero), set

d “

N
ÿ1

i“0

αib
piq,

where the primed sum indicates that we omit the index r in the summation

whenever N ě r. The constant tail of d is equal to
ÿ1N

i“0
αi and starts at

index N. Hence we cannot obtain bprq with any such combination since its
constant tail starts at index r. This shows that

SppBq Ĺ K8
cst

for any B Ĺ tbpiq | i ě 0u.
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