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1. For each of the following sets, prove whether or not they are linearly independent
over R:
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Solution: The vectors v1, . . . v4 P R4 are linearly independent if and only if the
homogeneous linear system of equations x1v1 ` ¨ ¨ ¨ ` x4v4 is only solved by x1 “

x2 “ x3 “ x4 “ 0. Gaussian elimination leads to
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Thus, the vectors in S1 are linearly dependent.

For S2, we can write
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Using Gauss elimination, we find that the only solution to this equation is a “

b “ c “ d “ 0.

2. Are the following sets linearly independent over R?

(a) tp1, 0, 0q, p0, 2, tq, p2, 4, t2qu for t in R;
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(b) The set of columns of an upper triangular matrix A P MnˆnpRq with Aii ‰ 0
for all 1 ď i ď n. We define an upper triangular matrix to be a matrix whose
entries under the diagonal all vanish, i.e. a matrix A “ pAijq1ďi,jďn such that
Aij “ 0 whenever j ă i.

(c) tf, gu Ď AbbpR,Rq, where fpxq “ sinpxq and gpxq “ cospxq;

(d) tf, gu Ď AbbpR,Rq, where fpxq “ erx and gpxq “ esx, for fixed s, r P R.

Solution:

(a) As for exercise 1., we use Gauss elimination on the matrix
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¨
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‚
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We obtain that if t2 ´ 2t ‰ 0, i.e. t R t0, 2u, then the matrix transforms to
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Hence the vectors are linearly independent in this case.

Now if t P t0, 2u, we see that
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(b) The matrix is already in row echelon form. We can use the non-zero value on
the diagonal of every column to clear all the columns from right to left. We are
then left with a diagonal matrix with non-zero values on the diagonal which
we can transform into the identity matrix by dividing every row successively.
Then it is clear that the system only has the trivial solution. The whole point
of the Gauss algorithm is that it does not change the solution set and therefore
we can conclude that the original vectors only have the trivial solution, hence
are linearly independent.

Alternative solution: Let v1, . . . , vn be the columns of A, and let α1, . . . , αn P

K. Define v :“ α1v1` ¨ ¨ ¨ ` αnvn. Induction shows that the k-st entry vpkq of
v satisfies

vpkq
“

n
ÿ

i“k

αiAki
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If n “ 1, there is nothing to show. So assume that the assertion is true
for every upper triangular matrix B P MnˆnpRq. Let N :“ n ` 1 ě 2 and
A P MNˆNpRq an upper triangular matrix. Then there exists B P MnˆnpRq,
a vector u P Rn and α P R such that

A “

ˆ

B u
0 α

˙

Let w1, . . . , wn be the columns of B and v1, . . . , vN the columns of A, and let
v :“

řN
k“1 αkvk. Take 1 ď k ď n, then the k-st entry vpkq of v is given by

vpkq
“

N
ÿ

i“1

αiv
pkq

i “

n
ÿ

i“1

αiw
pkq

i ` αNu
pkq

“

n
ÿ

i“k

αiBki ` αNu
pkq

“

n
ÿ

i“k

αiAki ` αNAkN “

N
ÿ

i“k

αiAki

We have vpNq “ αNANN “
řN

k“N αkANk and so we are done with the induc-
tion.

Now let A P MnˆnpRq be an upper triangular matrix with Aii ‰ 0 for all
1 ď i ď n. Let v1, . . . , vn P Rn be the columns of A and take α1, . . . , αn P R
such that α1v1 ` ¨ ¨ ¨ ` αnvn “ 0, also 0 “

řn
i“k αiAik holds for all1 ď k ď n.

In particular, we have 0 “ αnAnn, and from Ann ‰ 0, it follows that αn “ 0.
Let 1 ď k ă n and αk`1 “ ¨ ¨ ¨ “ αn “ 0. Our assumption implies 0 “
řn

i“k αiAki “ αkAkk and thus αk “ 0. We get α1 “ ¨ ¨ ¨ “ αn “ 0. In other
words, the vectors v1, . . . , vn are linearly independent.

(c) Assume there exist a, b P R, one of which is non-zero, such that

a cospxq ` b sinpxq “ 0, @x P R.

Note that if one of a or b vanishes, we directly obtain a contradiction since
neither sin nor cos is constant and equal to 0. So, we can assum that b ‰ 0 ‰ a.
We then get

´
a

b
cospxq “ sinpxq, @x P R.

Letting x “ 0, we obtain ´a
b

“ 0, which is once again a contradiction. Hence
this set is linearly independent over R.

(d) Assume there exist a, b P R and for all x P R : aerx ` besx “ 0. This is
equivalent to aepr´sqx “ ´b. Hence, either a “ b “ 0 or epr´sqx is constant.
The latter holds if and only if r “ s. Hence tf, gu is linearly independent over
R whenever r ‰ s, i.e. whenever f ‰ g.

3. Consider A1, A2 P M2ˆ3pRq, given by

A1 “

ˆ

1 2 3
0 0 1

˙

, A2 “

ˆ

0 1 0
0 0 1

˙
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(a) Show that tA1, A2u is linearly independent over R.
(b) Let

M :“

"ˆ

a b c
d e f

˙

P M2ˆ3pRq | d “ e “ 0, b ´ a “ f, 3a “ c

*

Prove that SppA1, A2q “ M .

(c) FindA3 P M2ˆ3pRq such that tA1, A2, A3u is linearly independent. Is SppA1, A2, A3q “

M2ˆ3pRq for any choice of such an A3?

Solution:

(a) Assume that A1, A2 are linearly independent. Then there exist α, β P R, not
both 0, such that

ˆ

0 0 0
0 0 0

˙

“ α

ˆ

1 2 3
0 0 1

˙

` β

ˆ

0 1 0
0 0 1

˙

“

ˆ

α 2α ` β 3α
0 0 α ` β

˙

This computation already shows that we must have α “ β “ 0, which is a
contradiction. Thus A1, A2 are linearly independent.

(b) The calculation in 2.a) implies that xA1, A2y Ď M . It thus remains to show
that M Ď xA1, A2y, or in other words, that every matrix B P M2ˆ3pRq of the
form

ˆ

a b c
0 0 f

˙

,

where b ´ a “ f and 3a “ c is contained in xA1, A2y. We calculate:

ˆ

a b c
0 0 f

˙

“

ˆ

a a ` f 3a
0 0 f

˙

“

ˆ

a 2a 3a
0 0 a

˙

`

ˆ

0 f ´ a 0
0 0 f ´ a

˙

“ aA1 ` pf ´ aqA2

(c) Let us denote

A3 :“

ˆ

c11 c12 c13
c21 c22 c23

˙

,

We see that for any non-trivial linear combination

L “ αA1 ` βA2 ` γA3, with α, β, γ P R,
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the lower-left entry of L is equal to γc21 and therefore will be non-zero when
γ ‰ 0 if we choose A3 so that c21 ‰ 0. We choose

A3 “

ˆ

0 0 0
1 0 0

˙

.

Similarly, if α ‰ 0, the upper-right entry of L will not vanish. Hence, for L
to be the zero matrix, we must have α “ γ ´ 0 and L “ βA2 “ 0, which
implies β “ 0. So, the set tA1, A2, A3u is linearly independent over R. With
this choice of A3, it is clear that xA1, A2, A3y ‰ M2ˆ3pRq since the middle
entry of the second row is 0 for any matrix in this space.

Now assume that A3 P M2ˆ3pRq is any matrix that such that tA1, A2, A3u

are linearly independent. Consider a linear combination

L “ αA1 ` βA2 ` γA3, with α, β, γ P R.

Keeping the same notation for the entries ofA3 and denoting L “ plijq1ďiď2, 1ďjď3,
we obtain the following linear system:
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%

α ` γc11 “ l11
2α ` β ` γc12 “ l12

...
γc21 “ l21
γc22 “ l22
...

So, if c21 “ 0 or c22 “ 0, then clearly SppA1, A2, A3q ‰ M2ˆ3pRq. Otherwise
γ “ l21

c21
and therefore l22 “ l21

c21
c22. So any matrix that doesn’t verify this

relation is not in SppA1, A2, A3q. So

SppA1, A2, A ´ 3q ‰ M2ˆ3pRq.

4. Show that

U “ tf P AbbpF5,F5q |

4
ÿ

i“0

fpiq “ 0u Ď AbbpF5,F5q

is a linear subspace. Determine a basis of U.

Solution: We write the elements of F5 as

t0, 1, 2, 3, 4u.

The function that takes the value 0 on all of F5 is the zero element in AbbpF5,F5q

and is contained in U . For f, g P U and µ, λ P F5, we have

4
ÿ

i“0

pµf ` λgqp̄iq “ µ
4

ÿ

i“0

f p̄iq ` λ
4

ÿ

i“0

gp̄iq “ 0,
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and thus µf ` λg P U .

Alternatively, one can directly say that U is the set of sulutions of a homogeneous
linear equation and thus a linear subspace.

We will now determine a basis of U . For i “ 1, 2, 3, 4, consider the map

fipj̄q “

$

&

%

4, j “ 0
1, j “ i
0, else.

Reminder: We have 4 “ ´1 in F5 and thus fi P U .

These maps are linearly independent. To see this, consider λi P F5 with

4
ÿ

i“1

λifi “ 0.

For j “ 1, 2, 3, 4, this yields

0 “

˜

4
ÿ

i“1

λifi

¸

pj̄q “ λjfjpj̄q “ λj.

It remains to show that U is generated by the fi. To see this, let f P U and define

g :“ fp1qf1 ` fp2qf2 ` fp3qf3 ` fp4qf4.

We get for i “ 1, 2, 3, 4 :
gp̄iq “ f p̄iqfip̄iq “ f p̄iq.

As f P U , we also get

fp0q “ ´

˜

4
ÿ

i“1

f p̄iq

¸

“ 4
4

ÿ

i“1

f p̄iq “ gp0q,

and hence f “ g.

5. Let V be a vector space over some field K that admits a countable basis. Show
that every linearly independent subset S Ď V is finite or countable.

Solution: Let tvn | n P Zě0u be a basis of V and let S be a linearly independent
subset of V . We denote

Vi :“ Sppv1, v2, . . . , viq and Si :“ S X Vi “ tv P S | v P Viu.

Note that now

V “

8
ď

i“1

Vi and S “ S X V “

8
ď

i“1

Si.
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Since tviu is a basis of V , the maximum size of a linearly independent set in Vi is
i. Therefore, since all the subsets Si are linearly independent, we have

|Si| ď i, @i P t1, 2, 3, . . . u.

So, S is a countable union of finite sets, hence countable.

6. Prove that the functions

φa : Rą0 Ñ R, x ÞÑ
1

a ` x

for all a P Rě0 are linear independent.

Hint : Use that a non-zero polynomial only has finitely many zeros.

Solution: Consider finitely many αi P R together with pairwise distinct ai P Rě0

such that
řm

i“1 αiφai “ 0. For all x P Rą0, we get

m
ÿ

i“1

αi ¨
1

ai ` x
“ 0.

Multiplication with
śm

i“1 pai ` xq yields

m
ÿ

i“1

αi

ź

j‰i

paj ` xq “ 0

The left side of this equation is a polynomial in x, thus the hint implies that this
is the zero polynomial. In particular, the equation also is satisfied for x “ ´ak for
every 1 ď k ď m. For all i ‰ k we get

ś

j‰i paj ´ akq “ 0; and so the equation
reduces to

αk ¨
ź

j‰k

paj ´ akq “ 0.

As the ai were chosen pairwise distinct, we get
ś

j‰k paj ´ akq ‰ 0 and hence
αk “ 0. As this is true for all k, we get α1 “ ¨ ¨ ¨ “ αm “ 0. In other words, the
functions φa, a P Rě0, are linearly independent.

Multiple Choice questions. Each question can admit several answers.

Question 1. Let V be a vector space over K. Which of the following assertions
is true ?

✓ Let v P V , then the set

W :“ tw P V | Dλ P K : w “ λvu
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is a linear subspace of V .
Justification: You can see straight away that this equals

Sppvq “ tλv | λ P Ku,

by definition, and therefore that it is a linear subspace. Alternatively, you can
check it explicitly: we have 0V “ 0 ¨ v, Moreover, for w,w1 P W with w “ λv,
w1 “ λ1v and for any µ, µ1 P K, we have

µw ` µ1w1
“ µλv ` µ1λ1v “ pµλ ` µ1λ1

qv.

Hence µw ` µ1w1 P W.

✓ A subset W Ă V is a linear subspace if and only if SppW q “ W.
Justification: The right-to-left implication follows directly from the fact that
the span of a set is linear. On the other hand, if W is linear, we show that
W “

Ş

UĚW
U linear

U . This is indeed the case since otherwise there would exist a

linear subspace U such that W Ď U Ĺ W , which is a contradiction.

✓ Let S1, S2 Ă V be subsets. Then SppS1 Y S2q “ SppS1q ` SppS2q.
Justification: Left-to-right inclusion: for i “ 1, 2, we have that Si Ď SppSiq Ď

SppS1q ` SppS2q. Hence S1 Y S2 Ď SppS1q ` SppS2q. Since SppS1q ` SppS2q is
linear, we obtain SppS1 Y S2q Ď SppS1q ` SppS2q.

Right-to-left inclusion: From Si Ď S1 Y S2, we have SppSiq Ď SppS1 Y S2q

for i “ 1, 2. Since SppS1 Y S2q is linear, it contains the sum of any 2 of its
elements, hence SppS1q ` SppS2q Ď SppS1 Y S2q.

✓ Let S1, S2 Ă V be subsets. Then SppS1 X S2q Ď SppS1q X SppS2q.
Justification: We have S1 X S2 Ď Si Ď SppSiq, for i “ 1, 2. Therefore

S1 X S2 Ď SppS1q X SppS2q.

Since the intersection preserves linearity, the right-hand side above is linear.
So, by minimality of the span, we have SppS1 X S2q Ď SppS1q X SppS2q

Question 2. Let V be a vector space and let S1, S2 Ď V with S1 Ĺ S2. Which of
the following are true?

(a) If S1 is a linearly independent set, when is S2 a linearly independent set?

˝ Always

˝ Never

✓ Sometimes

Justification: For example, take V “ R2 over R and let

S1 “

"ˆ

1
0

˙*

, S2 “

"ˆ

1
0

˙

,

ˆ

0
1

˙

,

ˆ

1
1

˙*

.
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Then S2 is linearly dependent. On the other hand, if we remove the vector
p1, 1q from S2, it becomes lineatly independent.

If now S2 is a linearly independent set, when is S1 a linearly independent set?

✓ Always

˝ Never

˝ Sometimes

Justification: Indeed, if there exists a vanishing non-trivial linear combina-
tion of vectors of S1, then the same combination shows that S2 is linearly
dependent since S1 Ĺ S2.

(b) Answer the previous question, replacing “linearly independent set” with “ge-
nerating set for V ”.

Answer : If S1 is a generating set for V , then S2 is always a generating set
for V . Indeed, we have

V Ě SppS2q Ě SppS1q “ V.

If S2 is a generating set for V , then S1 is sometimes a generating set for V .
For example, take V “ R2 over R and let

S2 “

"ˆ

1
0

˙

,

ˆ

0
1

˙

,

ˆ

1
1

˙*

, S1 “

"ˆ

1
0

˙

,

ˆ

0
1

˙*

.

Then S1 is still a generating set for V . On the other hand if we remove the
second vector from S1, then it is not a generating set anymore.

(c) Answer question (a), replacing “linearly independent set” with “basis for V ”.
Answer: If S1 is a basis of V , then S2 is never a basis for V since it is not
linearly independent anymore.

If S2 is a basis of V , then S1 is never a basis of V since it doesn’t generate
V anymore.
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