Musterlösung Serie 7

- 1. Compute the dimension and find a basis of the following spaces
 - (a) The space of upper triangular matrices in $M_{n \times n}(\mathbb{R})$ over \mathbb{R} (for a definition, see Serie 6, exercise 2.b));
 - (b) The space of diagonal matrices in $M_{n \times n}(\mathbb{R})$ over \mathbb{R} , where diagonal matrices are all matrices $A = (a_{ij})$ such that $a_{ij} = 0$ whenever $i \neq j$;
 - (c) The space of symmetric matrices

$$W = \left\{ A \in M_{n \times n}(\mathbb{R}) \mid A^T = A \right\},\$$

where \cdot^T denotes the operation $A = (a_{ij})_{1 \leq i,j \leq n} \mapsto (a_{ji})_{1 \leq i,j \leq n}$;

(d) The space of matrices $A \in M_{n \times n}(\mathbb{F}_2)$ such that the sum of the columns of A is the null vector.

Lösung:

D-MATH

Prof. P. Biran

(a) A matrix is upper triangular if its entries $a_{ij} = 0$ whenever i > j. For all $1 \leq i, j \leq n$ such that $i \leq j$, let A_{kl} be the matrix whose entries are zero except for the entry a_{kl} , which is set to 1. Note that the set

$$\{A_{kl} \mid 1 \leqslant k, l \leqslant n \land k \leqslant l\}$$

is linearly independent since the matrices do not share any entries and it generates the space of upper triangular matrices. Hence it is a basis. Moreover the cardinality of this set is the sum of natural numbers smaller or equal to n

$$\sum_{m=1}^{n} m = \frac{n(n+1)}{2}.$$

- (b) For $1 \leq k \leq n$, let A_k be the matrix whose entries are all zero, except for the entry a_{kk} , which is set to 1. The set $\{A_k \mid 1 \leq k \leq n\}$ is linearly independent and generates the space of diagonal matrices. Hence it is a basis. The cardinality of this set is n.
- (c) For $1 \leq k \leq l \leq n$, let A_{kl} be the matrix such that $a_{kl} = 1 = a_{lk}$ and all other entries are set to 0. The set $\{A_{kl} \mid 1 \leq k \leq l \leq n\}$ is linearly independent and generates the space of symmetric matrices. We have n matrices with a unique 1 on the diagonal and

$$\sum_{m=1}^{n-1} m = \frac{(n-1)n}{2},$$

additional matrices. Hence the dimension is $n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$.

(d) Let W denote the said space. For any $A = (a_{ij})_{1 \le i,j \le n} \in W$, we have that for any $1 \le i \le n$,

$$\sum_{k=1}^{n} a_{ik} = 0 \Leftrightarrow a_{in} = \sum_{k=1}^{n-1} a_{ik}.$$

This shows that we have n-1 degrees of freedom for each row. Therefore, the dimension of W is $\leq n(n-1)$. We attempt to find a basis. For $1 \leq i \leq n$ and $1 \leq k \leq n-1$, we define $A_k^{(i)}$ to be the matrix that has a 1 in place of the (i, k)-th and (i, k+1)-st entries, and whose other entries vanish. We denote S_i the set $\{A_k^{(i)} \mid 1 \leq k \leq n-1\}$. To help you visualise it, we write out S_1 :

$$S_{1} = \left\{ \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix} \right\}.$$

We first show that any S_i is linearly independent. Consider a vanishing linear combination in S_i . Note that the coefficients in front of $A_1^{(i)}$ and $A_{n-1}^{(i)}$ must vanish since $A_1^{(i)}$ is the only matrix with an entry in the first column and $A_{n-1}^{(i)}$ is the only matrix with an entry in the last column. Repeat the argument in $T \setminus \{A_1^{(i)}, A_{n-1}^{(i)}\}$ for $A_2^{(i)}$ and $A_{n-2}^{(i)}$, and so on. This proves that the only vanishing linear combination in S_i is the trivial one.

Now, let $S = \bigcup_{i=1}^{n} S_i$. We show that S is linearly independent. Assume that we have a vanishing linear combination in S. Since the *i*-th row of the linear combination vanishes, the combination of elements of S_i vanishes in particular. By the previous paragraph, this implies that the elements of S_i have vanishing coefficients. Since this holds for all $1 \leq i \leq n$, the only vanishing linear combination in S is the trivial one. Hence S is linearly independent. Since dim $(W) \leq n(n-1)$ and S is a linearly independent subset of this size, it is a basis.

2. Let W be the linear subspace generated by the vectors

$$v_1 = \begin{pmatrix} 1\\2\\1\\2 \end{pmatrix}, v_2 = \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix}, v_3 = \begin{pmatrix} 1\\4\\2\\3 \end{pmatrix}, v_4 = \begin{pmatrix} 0\\2\\1\\1 \end{pmatrix}.$$

- (a) Determine a system of equations whose solution is W.
- (b) Find all the possible bases of W that can be built using v_1, v_2, v_3, v_4 . How many are there?

Solution:

(a) Gaussian Elimination yields that v_1, v_2 and v_4 are linearly independent. The vector $v_3 = v_1 + v_4$ is a linear combination of v_1 and v_4 . Hence W is a threedimensional hyperplane in \mathbb{R}^4 . It is thus enough to determine the normal vector $n := (n_1, n_2, n_3, n_4) \in \mathbb{R}^4$ which is orthogonal on v_1, v_2, v_4 . For this, we solve the system of equations

$$\begin{cases} \langle n, v_1 \rangle &= 0\\ \langle n, v_2 \rangle &= 0\\ \langle n, v_4 \rangle &= 0 \end{cases}$$

where $\langle n, v_i \rangle$ denotes the standard scalar product in \mathbb{R}^4 . This system of equations is equivalent to

$$\begin{cases} n_1 + 2n_2 + n_3 + 2n_4 &= 0\\ -n_3 + n_4 &= 0\\ 2n_2 + n_3 + n_4 &= 0 \end{cases}$$

Solving yields that the solutions are given by

$$n = (n_1, n_1, -n_1, -n_1)$$

for an arbitrary $n_1 \in \mathbb{R}$. As the length of a normalvector is irrelevant, we choose $n_1 = 1$ and get n = (1, 1, -1 - 1). Now a system of equations whose set of solutions is W is given by

$$\langle n, x \rangle = 0,$$

where $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$. This is because all vectors

$$x = (x_1, x_2, x_3, x_4)$$

which satisfy this condition (and thus are solutions of this system of equations), are orthogonal to n and so are contained in W. Explicitly, we get the equation

$$x_1 + x_2 - x_3 - x_4 = 0.$$

(b) Because of the relation $v_3 = v_1 + v_4$, the vectors v_1, v_3 and v_4 are linearly dependent, but every two out of the three are linearly independent. The vector v_2 is linearly independent from the three others. Thus v_2 must be contained in any basis which is only allowed to contain the vectors v_1, v_2, v_3, v_4 . Thus there are three possibilities:

$$\mathcal{B}_1 = \{v_1, v_2, v_3\}, \quad \mathcal{B}_2 = \{v_1, v_2, v_4\}, \quad \mathcal{B}_3 = \{v_2, v_3, v_4\}.$$

- 3. Determine a basis and the dimension of the following spaces:
 - (a) The set of solutions $S \subseteq \mathbb{R}^3$ of

$$x + y - z = 0$$
$$3x + y + 2z = 0$$
$$2x + 3z = 0$$

- (b) {0};
- (c) $\{(z, w) \in \mathbb{C}^2 \mid z + iw = 0\}$ as a vector space over \mathbb{C} ;
- (d) $\{(z, w) \in \mathbb{C}^2 \mid z + iw = 0\}$ as a vector space over \mathbb{R} .

Lösung:

- (a) Gaussian elimination yields as the set of solutions the one-dimensional vector space $V := \{(-\frac{3}{2}z, \frac{5}{2}z, z) \mid z \in \mathbb{R}\}$. A basis is for exampled formed by the vector (-3, 5, 2).
- (b) We can write the zero-vector as empty sum, that is, the sum over no elements. Thus the empty set Ø forms a basis of {0} and the bector space has dimension 0. (Note: The zero-vector 0 can not be contained in any basis, as it is not linearly independent.)
- (c) Let V be the vector space $\{(x, y) \in \mathbb{C}^2 \mid x + iy = 0\}$ over \mathbb{C} . Let $(x, y) \in V$. Then we have $x + iy = 0 \Rightarrow y = ix$ and thus (x, y) = (x, ix) = x(1, i) for every $(x, y) \in V$. Hence, we can write each $(x, y) \in V$ as multiple of the vector (1, i). This vector is of course linearly independent in \mathbb{C}^2 and thus forms a basis of V. The complex dimension of this vectorspace therefore is 1.
- (d) We have shown in d) that every element in V is of theh form $x(1, i), x \in \mathbb{C}$. When we now consider $x = a + ib, a, b \in \mathbb{R}$, we get

$$x(1,i) = (a+ib)(1,i) = a(1,i) + ib(1,i) = a(1,i) + b(i,-1).$$

Hence every $(x, y) \in V$ can be written as linear combination of (1, i) and (i, -1). Those two are linearly independent in V over \mathbb{R} and thus form a basis. Over \mathbb{R} , the vector space has dimension 2.

4. Let K be a field, fix $g(X) := X + 5 \in K[X]$, and let $d \ge 1$. Compute the dimension of the space

$$W = \{h \in K[X] \mid \deg(h) \leq d \land \exists f \in K[X] : h = gf\}.$$

Lösung: Let

$$S = \{g, Xg, X^2g, \dots, X^{d-1}g\}.$$

These polynomials clearly belong to W since they are divisible by g and since

$$\deg(X^{i}g) = i + \deg(g) = i + 1,$$

which is smaller or equal to d for $0 \leq i \leq d-1$. Moreover, this is a linearly independent set as all these polynomials are of different degrees. Now, since

$$W \subset K[X]_{\leq d} := \{ p \in K[X] \mid \deg(p) \leq d \}$$

we know that $\dim(W) \leq d+1$ (recall that $\{1, X, X^2, \ldots, X^d\}$ is a basis of $K[X]_{\leq d}$ over K). Additionally, since there is no constant non-zero polynomial in W, its dimension is at most d. Since S is a set of d linearly independent polynomials in W, it is a basis of W and $\dim(W) = d$.

5. Consider the following subspace of K^n :

$$U := \left\{ (\alpha_1, \dots, \alpha_n) \in K^n \mid \sum_{i=1}^n \alpha_i = 0 \right\},$$
$$D := \left\{ (\alpha, \dots, \alpha) \in K^n \mid \alpha \in K \right\}.$$

Determine a basis and compute the dimension of $U, D, U \cap D$, and U + D.

Remark: Do not forget to consider the case where K is a field such that $n \cdot 1 = 0$. *Lösung*: For n = 0 we have $U = D = U \cap D = U + D = 0$. These linear subspaces both have dimension 0.

Now suppose $n \ge 1$. Every element of the form $(\alpha, \ldots, \alpha) \in D$ is a multiple of $v := (1, \ldots, 1)$. Since $v \ne 0$, the set $\{v\}$ is a minimal generating set of D or in other words a basis of D. Hence we have $\dim(D) = 1$. Thereafter the n-1 vectors

$$v_1 = (1, -1, 0, \dots, 0), \quad v_2 = (0, 1, -1, 0, \dots, 0), \quad \dots \quad v_{n-1} = (0, \dots, 0, 1, -1)$$

are contained in U and linearly independent. In particular, we have $\dim(U) \ge n-1$. As $(1,0,\ldots,0) \notin U$, we get $\dim(U) < \dim(K^n) = n$ and thus find that $\dim(U) = n-1$. As the vectors v_1,\ldots,v_{n-1} are linearly independent and their number is equal to the dimension of U, they form a basis of U.

If we have $n \cdot 1 \neq 0$ in K, then $v = (1, \ldots, 1) \notin U$. In that case, we have $U \cap D = 0$, and hence $\emptyset \dim(U \cap D) = 0$. As $U = \langle v_1, \ldots, v_{n-1} \rangle$ we also find that v, v_1, \ldots, v_{n-1} are linearly independent. This shows $\dim(U + D) \ge n$. But we already have $\dim(U + V) \le \dim(K^n) = n$, and consequently conclude that U + D has dimension n and admits the basis $\{v, v_1, \ldots, v_{n-1}\}$. Of course the standard basis of K^n is also a basis of U + D

If we have $n \cdot 1 = 0$ in K, then $v = (1, ..., 1) \in U$, and hence $D \subset U$. In that case we have $U \cap D = D$ and U + D = U.

6. Determine a basis and compute the dimension of the space

 $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous } \land (f + f'' = 0)\}.$

Hint: Note that f, f', and f'' exist and are continuous. Moreover, you can use the following result from Analysis: the function $f : \mathbb{R} \to \mathbb{R}$ such that $\forall x \in \mathbb{R} : f(x) = 0$ is the unique continuous solution to

$$\begin{cases} f + f'' = 0 \\ f(0) = f'(0) = 0 \end{cases}$$

Solution: To put the hint into different words : for every two times continuously differentiable $f : \mathbb{R} \to \mathbb{R}$ with f(0) = 0, f'(0) = 0 and $f(x) + f''(x) = 0 \forall x \in \mathbb{R}$, we have $f(x) = 0 \forall x \in \mathbb{R}$. Now let $V = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is } C^2 \text{ and } f + f'' = 0\}$ and let $f \in V$. Set a := f(0) und b := f'(0). Also define $g(x) := f(x) - a\cos(x) - b\sin(x)$. We have g(0) = 0, g'(0) = 0 and $g \in V$ as $\sin(x), \cos(x) \in V$. Thus, we have $g(x) = 0 \forall x \in \mathbb{R}$. Therefore, we find $f(x) = a\cos(x) + b\sin(x)$. Thus every element of V is a linear combination of $\sin(x)$ and $\cos(x)$. These functions are linearly independent elements over \mathbb{R} and thus form a basis of V. We conclude that V has dimension 2.