Musterlösung Serie 7

1. Compute the dimension and find a basis of the following spaces
(a) The space of upper triangular matrices in $M_{n \times n}(\mathbb{R})$ over \mathbb{R} (for a definition, see Serie 6, exercise 2.b));
(b) The space of diagonal matrices in $M_{n \times n}(\mathbb{R})$ over \mathbb{R}, where diagonal matrices are all matrices $A=\left(a_{i j}\right)$ such that $a_{i j}=0$ whenever $i \neq j$;
(c) The space of symmetric matrices

$$
W=\left\{A \in M_{n \times n}(\mathbb{R}) \mid A^{T}=A\right\}
$$

where $\cdot{ }^{T}$ denotes the operation $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n} \mapsto\left(a_{j i}\right)_{1 \leqslant i, j \leqslant n}$;
(d) The space of matrices $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$ such that the sum of the columns of A is the null vector.

Lösung:

(a) A matrix is upper triangular if its entries $a_{i j}=0$ whenever $i>j$. For all $1 \leqslant i, j \leqslant n$ such that $i \leqslant j$, let $A_{k l}$ be the matrix whose entries are zero except for the entry $a_{k l}$, which is set to 1 . Note that the set

$$
\left\{A_{k l} \mid 1 \leqslant k, l \leqslant n \wedge k \leqslant l\right\}
$$

is linearly independent since the matrices do not share any entries and it generates the space of upper triangular matrices. Hence it is a basis. Moreover the cardinality of this set is the sum of natural numbers smaller or equal to n

$$
\sum_{m=1}^{n} m=\frac{n(n+1)}{2}
$$

(b) For $1 \leqslant k \leqslant n$, let A_{k} be the matrix whose entries are all zero, except for the entry $a_{k k}$, which is set to 1 . The set $\left\{A_{k} \mid 1 \leqslant k \leqslant n\right\}$ is linearly independent and generates the space of diagonal matrices. Hence it is a basis. The cardinality of this set is n.
(c) For $1 \leqslant k \leqslant l \leqslant n$, let $A_{k l}$ be the matrix such that $a_{k l}=1=a_{l k}$ and all other entries are set to 0 . The set $\left\{A_{k l} \mid 1 \leqslant k \leqslant l \leqslant n\right\}$ is linearly independent and generates the space of symmetric matrices. We have n matrices with a unique 1 on the diagonal and

$$
\sum_{m=1}^{n-1} m=\frac{(n-1) n}{2}
$$

additional matrices. Hence the dimension is $n+\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$.
(d) Let W denote the said space. For any $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n} \in W$, we have that for any $1 \leqslant i \leqslant n$,

$$
\sum_{k=1}^{n} a_{i k}=0 \Leftrightarrow a_{i n}=\sum_{k=1}^{n-1} a_{i k}
$$

This shows that we have $n-1$ degrees of freedom for each row. Therefore, the dimension of W is $\leqslant n(n-1)$. We attempt to find a basis. For $1 \leqslant i \leqslant n$ and $1 \leqslant k \leqslant n-1$, we define $A_{k}^{(i)}$ to be the matrix that has a 1 in place of the (i, k)-th and $(i, k+1)$-st entries, and whose other entries vanish. We denote S_{i} the set $\left\{A_{k}^{(i)} \mid 1 \leqslant k \leqslant n-1\right\}$. To help you visualise it, we write out S_{1} :
$S_{1}=\left\{\left(\begin{array}{cccccc}1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0\end{array}\right),\left(\begin{array}{cccccc}0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0\end{array}\right), \cdots,\left(\begin{array}{cccccc}0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0\end{array}\right)\right\}$.
We first show that any S_{i} is linearly independent. Consider a vanishing linear combination in S_{i}. Note that the coefficients in front of $A_{1}^{(i)}$ and $A_{n-1}^{(i)}$ must vanish since $A_{1}^{(i)}$ is the only matrix with an entry in the first column and $A_{n-1}^{(i)}$ is the only matrix with an entry in the last column. Repeat the argument in $T \backslash\left\{A_{1}^{(i)}, A_{n-1}^{(i)}\right\}$ for $A_{2}^{(i)}$ and $A_{n-2}^{(i)}$, and so on. This proves that the only vanishing linear combination in S_{i} is the trivial one.
Now, let $S=\bigcup_{i=1}^{n} S_{i}$. We show that S is linearly independent. Assume that we have a vanishing linear combination in S. Since the i-th row of the linear combination vanishes, the combination of elements of S_{i} vanishes in particular. By the previous paragraph, this implies that the elements of S_{i} have vanishing coefficients. Since this holds for all $1 \leqslant i \leqslant n$, the only vanishing linear combination in S is the trivial one. Hence S is linearly independent. Since $\operatorname{dim}(W) \leqslant n(n-1)$ and S is a linearly independent subset of this size, it is a basis.
2. Let W be the linear subspace generated by the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right), v_{2}=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
4 \\
2 \\
3
\end{array}\right), v_{4}=\left(\begin{array}{l}
0 \\
2 \\
1 \\
1
\end{array}\right)
$$

(a) Determine a system of equations whose solution is W.
(b) Find all the possible bases of W that can be built using $v_{1}, v_{2}, v_{3}, v_{4}$. How many are there?

Solution:

(a) Gaussian Elimination yields that v_{1}, v_{2} and v_{4} are linearly independent. The vector $v_{3}=v_{1}+v_{4}$ is a linear combination of v_{1} and v_{4}. Hence W is a threedimensional hyperplane in \mathbb{R}^{4}. It is thus enough to determine the normal vector $n:=\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \in \mathbb{R}^{4}$ which is orthogonal on v_{1}, v_{2}, v_{4}. For this, we solve the system of equations

$$
\left\{\begin{array}{l}
\left\langle n, v_{1}\right\rangle=0 \\
\left\langle n, v_{2}\right\rangle=0 \\
\left\langle n, v_{4}\right\rangle=0
\end{array}\right.
$$

where $\left\langle n, v_{i}\right\rangle$ denotes the standard scalar product in \mathbb{R}^{4}. This system of equations is equivalent to

$$
\left\{\begin{aligned}
n_{1}+2 n_{2}+n_{3}+2 n_{4} & =0 \\
-n_{3}+n_{4} & =0 \\
2 n_{2}+n_{3}+n_{4} & =0
\end{aligned}\right.
$$

Solving yields that the solutions are given by

$$
n=\left(n_{1}, n_{1},-n_{1},-n_{1}\right)
$$

for an arbitrary $n_{1} \in \mathbb{R}$. As the length of a normalvector is irrelevant, we choose $n_{1}=1$ and get $n=(1,1,-1-1)$. Now a system of equations whose set of solutions is W is given by

$$
\langle n, x\rangle=0,
$$

where $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$. This is because all vectors

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

which satisfy this condition (and thus are solutions of this sytem of equations), are orthogonal to n and so are contained in W. Explicitly, we get the equation

$$
x_{1}+x_{2}-x_{3}-x_{4}=0 .
$$

(b) Because of the relation $v_{3}=v_{1}+v_{4}$, the vectors v_{1}, v_{3} and v_{4} are linearly dependent, but every two out of the three are linearly independent. The vector v_{2} is linearly independent from the three others. Thus v_{2} must be contained in any basis which is only allowed to contain the vectors $v_{1}, v_{2}, v_{3}, v_{4}$. Thus there are three possibilities:

$$
\mathcal{B}_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, \quad \mathcal{B}_{2}=\left\{v_{1}, v_{2}, v_{4}\right\}, \quad \mathcal{B}_{3}=\left\{v_{2}, v_{3}, v_{4}\right\} .
$$

3. Determine a basis and the dimension of the following spaces:
(a) The set of solutions $S \subseteq \mathbb{R}^{3}$ of

$$
\begin{array}{r}
x+y-z=0 \\
3 x+y+2 z=0 \\
2 x+3 z=0
\end{array}
$$

(b) $\{0\}$;
(c) $\left\{(z, w) \in \mathbb{C}^{2} \mid z+i w=0\right\}$ as a vector space over \mathbb{C};
(d) $\left\{(z, w) \in \mathbb{C}^{2} \mid z+i w=0\right\}$ as a vector space over \mathbb{R}.

Lösung:

(a) Gaussian elimination yields as the set of solutions the one-dimensional vector space $V:=\left\{\left.\left(-\frac{3}{2} z, \frac{5}{2} z, z\right) \right\rvert\, z \in \mathbb{R}\right\}$. A basis is for exampled formed by the vector $(-3,5,2)$.
(b) We can write the zero-vector as empty sum, that is, the sum over no elements. Thus the empty set \varnothing forms a basis of $\{0\}$ and the bector space has dimension 0 . (Note: The zero-vector 0 can not be contained in any basis, as it is not linearly independent.)
(c) Let V be the vector space $\left\{(x, y) \in \mathbb{C}^{2} \mid x+i y=0\right\}$ over \mathbb{C}. Let $(x, y) \in V$. Then we have $x+i y=0 \Rightarrow y=i x$ and thus $(x, y)=(x, i x)=x(1, i)$ for every $(x, y) \in V$. Hence, we can write each $(x, y) \in V$ as multiple of the vector $(1, i)$. This vector is of course linearly independent in \mathbb{C}^{2} and thus forms a basis of V. The complex dimension of this vectorspace therefore is 1 .
(d) We have shown in d) that every element in V is of theh form $x(1, i), x \in \mathbb{C}$. When we now consider $x=a+i b, a, b \in \mathbb{R}$, we get

$$
x(1, i)=(a+i b)(1, i)=a(1, i)+i b(1, i)=a(1, i)+b(i,-1) .
$$

Hence every $(x, y) \in V$ can be written as linear combination of $(1, i)$ and $(i,-1)$. Those two are linearly independent in V over \mathbb{R} and thus form a basis. Over \mathbb{R}, the vector space has dimension 2 .
4. Let K be a field, fix $g(X):=X+5 \in K[X]$, and let $d \geqslant 1$. Compute the dimension of the space

$$
W=\{h \in K[X] \mid \operatorname{deg}(h) \leqslant d \wedge \exists f \in K[X]: h=g f\} .
$$

Lösung: Let

$$
S=\left\{g, X g, X^{2} g, \ldots, X^{d-1} g\right\} .
$$

These polynomials clearly belong to W since they are divisible by g and since

$$
\operatorname{deg}\left(X^{i} g\right)=i+\operatorname{deg}(g)=i+1
$$

which is smaller or equal to d for $0 \leqslant i \leqslant d-1$. Moreover, this is a linearly independent set as all these polynomials are of different degrees. Now, since

$$
W \subset K[X]_{\leqslant d}:=\{p \in K[X] \mid \operatorname{deg}(p) \leqslant d\}
$$

we know that $\operatorname{dim}(W) \leqslant d+1$ (recall that $\left\{1, X, X^{2}, \ldots, X^{d}\right\}$ is a basis of $K[X]_{\leqslant d}$ over K). Additionally, since there is no constant non-zero polynomial in W, its dimension is at most d. Since S is a set of d linearly independent polynomials in W, it is a basis of W and $\operatorname{dim}(W)=d$.
5. Consider the following subspace of K^{n} :

$$
\begin{aligned}
U & :=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K^{n} \mid \sum_{i=1}^{n} \alpha_{i}=0\right\}, \\
D & :=\left\{(\alpha, \ldots, \alpha) \in K^{n} \mid \alpha \in K\right\} .
\end{aligned}
$$

Determine a basis and compute the dimension of $U, D, U \cap D$, and $U+D$.
Remark: Do not forget to consider the case where K is a field such that $n \cdot 1=0$.
Lösung: For $n=0$ we have $U=D=U \cap D=U+D=0$. These linear subspaces both have dimension 0 .

Now suppose $n \geqslant 1$. Every element of the form $(\alpha, \ldots, \alpha) \in D$ is a multiple of $v:=(1, \ldots, 1)$. Since $v \neq 0$, the set $\{v\}$ is a minimal generating set of D or in other words a basis of D. Hence we have $\operatorname{dim}(D)=1$. Thereafter the $n-1$ vectors

$$
v_{1}=(1,-1,0, \ldots, 0), \quad v_{2}=(0,1,-1,0, \ldots, 0), \quad \ldots \quad v_{n-1}=(0, \ldots, 0,1,-1)
$$

are contained in U and linearly independent. In particular, we have $\operatorname{dim}(U) \geqslant$ $n-1$. As $(1,0, \ldots, 0) \notin U$, we get $\operatorname{dim}(U)<\operatorname{dim}\left(K^{n}\right)=n$ and thus find that $\operatorname{dim}(U)=n-1$. As the vectors v_{1}, \ldots, v_{n-1} are linearly indepnendent and their number is equal to the dimension of U, they form a basis of U.
If we have $n \cdot 1 \neq 0$ in K, then $v=(1, \ldots, 1) \notin U$. In that case, we have $U \cap$ $D=0$, and hence $\varnothing \operatorname{dim}(U \cap D)=0$. As $U=\left\langle v_{1}, \ldots, v_{n-1}\right\rangle$ we also find that $v, v_{1}, \ldots, v_{n-1}$ are linearly independent. This shows $\operatorname{dim}(U+D) \geqslant n$. But we already have $\operatorname{dim}(U+V) \leqslant \operatorname{dim}\left(K^{n}\right)=n$, and consequently conclude that $U+D$ has dimension n and admits the basis $\left\{v, v_{1}, \ldots, v_{n-1}\right\}$. Of course the standard basis of K^{n} is also a basis of $U+D$
If we have $n \cdot 1=0$ in K, then $v=(1, \ldots, 1) \in U$, and hence $D \subset U$. In that case we have $U \cap D=D$ and $U+D=U$.
6. Determine a basis and compute the dimension of the space

$$
\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is continuous } \wedge\left(f+f^{\prime \prime}=0\right)\right\}
$$

Hint: Note that f, f^{\prime}, and $f^{\prime \prime}$ exist and are continuous. Moreover, you can use the following result from Analysis: the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x \in \mathbb{R}: f(x)=0$ is the unique continuous solution to

$$
\left\{\begin{array}{rlc}
f+f^{\prime \prime} & = & 0 \\
f(0) & = & f^{\prime}(0)=0
\end{array}\right.
$$

Solution: To put the hint into different words : for every two times continuously differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)=0, f^{\prime}(0)=0$ and $f(x)+f^{\prime \prime}(x)=0 \forall x \in \mathbb{R}$, we have $f(x)=0 \forall x \in \mathbb{R}$. Now let $V=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f\right.$ is C^{2} and $\left.f+f^{\prime \prime}=0\right\}$ and let $f \in V$. Set $a:=f(0)$ und $b:=f^{\prime}(0)$. Also define $g(x):=f(x)-a \cos (x)-b \sin (x)$. We have $g(0)=0, g^{\prime}(0)=0$ and $g \in V$ as $\sin (x), \cos (x) \in V$. Thus, we have $g(x)=0 \forall x \in \mathbb{R}$. Therefore, we find $f(x)=a \cos (x)+b \sin (x)$. Thus every element of V is a linear combination of $\sin (x)$ and $\cos (x)$. These functions are linearly independent elements over \mathbb{R} and thus form a basis of V. We conclude that V has dimension 2.

