
D-MATH Lineare Algebra I HS 2022
Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 7

1. Compute the dimension and find a basis of the following spaces

(a) The space of upper triangular matrices in MnˆnpRq over R (for a definition,
see Serie 6, exercise 2.b));

(b) The space of diagonal matrices in MnˆnpRq over R, where diagonal matrices
are all matrices A “ paijq such that aij “ 0 whenever i ‰ j;

(c) The space of symmetric matrices

W “
␣

A P MnˆnpRq | AT
“ A

(

,

where ¨T denotes the operation A “ paijq1ďi,jďn ÞÑ pajiq1ďi,jďn;

(d) The space of matrices A P MnˆnpF2q such that the sum of the columns of A
is the null vector.

Lösung :

(a) A matrix is upper triangular if its entries aij “ 0 whenever i ą j. For all
1 ď i, j ď n such that i ď j, let Akl be the matrix whose entries are zero
except for the entry akl, which is set to 1. Note that the set

tAkl | 1 ď k, l ď n ^ k ď lu

is linearly independent since the matrices do not share any entries and it
generates the space of upper triangular matrices. Hence it is a basis. Moreover
the cardinality of this set is the sum of natural numbers smaller or equal to
n

n
ÿ

m“1

m “
npn ` 1q

2
.

(b) For 1 ď k ď n, let Ak be the matrix whose entries are all zero, except
for the entry akk, which is set to 1. The set tAk | 1 ď k ď nu is linearly
independent and generates the space of diagonal matrices. Hence it is a basis.
The cardinality of this set is n.

(c) For 1 ď k ď l ď n, let Akl be the matrix such that akl “ 1 “ alk and all other
entries are set to 0. The set tAkl | 1 ď k ď l ď nu is linearly independent
and generates the space of symmetric matrices. We have n matrices with a
unique 1 on the diagonal and

n´1
ÿ

m“1

m “
pn ´ 1qn

2
,
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additional matrices. Hence the dimension is n `
npn´1q

2
“

npn`1q

2
.

(d) Let W denote the said space. For any A “ paijq1ďi,jďn P W , we have that for
any 1 ď i ď n,

n
ÿ

k“1

aik “ 0 ô ain “

n´1
ÿ

k“1

aik.

This shows that we have n ´ 1 degrees of freedom for each row. Therefore,
the dimension of W is ď npn´ 1q. We attempt to find a basis. For 1 ď i ď n

and 1 ď k ď n´1, we define A
piq
k to be the matrix that has a 1 in place of the

pi, kq-th and pi, k ` 1q-st entries, and whose other entries vanish. We denote

Si the set tA
piq
k | 1 ď k ď n ´ 1u. To help you visualise it, we write out S1:

S1 “

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

1 1 0 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0
...

...
... ¨ ¨ ¨

...
...

0 0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

0 1 1 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0
...

...
... ¨ ¨ ¨

...
...

0 0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‚

, ¨ ¨ ¨ ,

¨

˚

˚

˚

˝

0 0 0 ¨ ¨ ¨ 1 1
0 0 0 ¨ ¨ ¨ 0 0
...

...
... ¨ ¨ ¨

...
...

0 0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

.

We first show that any Si is linearly independent. Consider a vanishing linear
combination in Si. Note that the coefficients in front of A

piq
1 and A

piq
n´1 must

vanish since A
piq
1 is the only matrix with an entry in the first column and A

piq
n´1

is the only matrix with an entry in the last column. Repeat the argument
in T ∖ tA

piq
1 , A

piq
n´1u for A

piq
2 and A

piq
n´2, and so on. This proves that the only

vanishing linear combination in Si is the trivial one.

Now, let S “
Ťn

i“1 Si. We show that S is linearly independent. Assume that
we have a vanishing linear combination in S. Since the i-th row of the linear
combination vanishes, the combination of elements of Si vanishes in parti-
cular. By the previous paragraph, this implies that the elements of Si have
vanishing coefficients. Since this holds for all 1 ď i ď n, the only vanishing
linear combination in S is the trivial one. Hence S is linearly independent.

Since dimpW q ď npn ´ 1q and S is a linearly independent subset of this size,
it is a basis.

2. Let W be the linear subspace generated by the vectors

v1 “

¨

˚

˚

˝

1
2
1
2

˛

‹

‹

‚

, v2 “

¨

˚

˚

˝

0
0

´1
1

˛

‹

‹

‚

, v3 “

¨

˚

˚

˝

1
4
2
3

˛

‹

‹

‚

, v4 “

¨

˚

˚

˝

0
2
1
1

˛

‹

‹

‚

.

(a) Determine a system of equations whose solution is W .

(b) Find all the possible bases of W that can be built using v1, v2, v3, v4. How
many are there?
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Solution:

(a) Gaussian Elimination yields that v1, v2 and v4 are linearly independent. The
vector v3 “ v1 ` v4 is a linear combination of v1 and v4. Hence W is a three-
dimensional hyperplane in R4. It is thus enough to determine the normal
vector n :“ pn1, n2, n3, n4q P R4 which is orthogonal on v1, v2, v4. For this, we
solve the system of equations

$

&

%

xn, v1y “ 0
xn, v2y “ 0
xn, v4y “ 0

where xn, viy denotes the standard scalar product in R4. This system of equa-
tions is equivalent to

$

&

%

n1 ` 2n2 ` n3 ` 2n4 “ 0
´n3 ` n4 “ 0

2n2 ` n3 ` n4 “ 0

Solving yields that the solutions are given by

n “ pn1, n1,´n1,´n1q

for an arbitrary n1 P R. As the length of a normalvector is irrelevant, we
choose n1 “ 1 and get n “ p1, 1,´1 ´ 1q. Now a system of equations whose
set of solutions is W is given by

xn, xy “ 0,

where x “ px1, x2, x3, x4q P R4. This is because all vectors

x “ px1, x2, x3, x4q

which satisfy this condition (and thus are solutions of this sytem of equations),
are orthogonal to n and so are contained in W . Explicitly, we get the equation

x1 ` x2 ´ x3 ´ x4 “ 0.

(b) Because of the relation v3 “ v1 ` v4, the vectors v1, v3 and v4 are linearly
dependent, but every two out of the three are linearly independent. The vector
v2 is linearly independent from the three others. Thus v2 must be contained
in any basis which is only allowed to contain the vectors v1, v2, v3, v4. Thus
there are three possibilities:

B1 “ tv1, v2, v3u , B2 “ tv1, v2, v4u , B3 “ tv2, v3, v4u .
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3. Determine a basis and the dimension of the following spaces:

(a) The set of solutions S Ď R3 of

x ` y ´ z “ 0

3x ` y ` 2z “ 0

2x ` 3z “ 0

(b) t0u;

(c) tpz, wq P C2 | z ` iw “ 0u as a vector space over C;
(d) tpz, wq P C2 | z ` iw “ 0u as a vector space over R.

Lösung :

(a) Gaussian elimination yields as the set of solutions the one-dimensional vector
space V :“

␣`

´3
2
z, 5

2
z, z

˘

| z P Ru. A basis is for exampled formed by the
vector p´3, 5, 2q.

(b) We can write the zero-vector as empty sum, that is, the sum over no elements.
Thus the empty set ∅ forms a basis of t0u and the bector space has dimension
0. (Note: The zero-vector 0 can not be contained in any basis, as it is not
linearly independent.)

(c) Let V be the vector space tpx, yq P C2 | x ` iy “ 0u over C. Let px, yq P V .
Then we have x ` iy “ 0 ñ y “ ix and thus px, yq “ px, ixq “ xp1, iq for
every px, yq P V . Hence, we can write each px, yq P V as multiple of the vector
p1, iq. This vector is of course linearly independent in C2 and thus forms a
basis of V . The complex dimension of this vectorspace therefore is 1.

(d) We have shown in d) that every element in V is of theh form xp1, iq, x P C.
When we now consider x “ a ` ib, a, b P R, we get

xp1, iq “ pa ` ibqp1, iq “ ap1, iq ` ibp1, iq “ ap1, iq ` bpi,´1q.

Hence every px, yq P V can be written as linear combination of p1, iq and
pi,´1q. Those two are linearly independent in V over R and thus form a
basis. Over R, the vector space has dimension 2.

4. Let K be a field, fix gpXq :“ X`5 P KrXs, and let d ě 1. Compute the dimension
of the space

W “ th P KrXs | degphq ď d ^ Df P KrXs : h “ gfu.

Lösung : Let
S “ tg,Xg,X2g, . . . , Xd´1gu.
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These polynomials clearly belong to W since they are divisible by g and since

degpX igq “ i ` degpgq “ i ` 1,

which is smaller or equal to d for 0 ď i ď d ´ 1. Moreover, this is a linearly
independent set as all these polynomials are of different degrees. Now, since

W Ă KrXsďd :“ tp P KrXs | degppq ď du,

we know that dimpW q ď d`1 (recall that t1, X,X2, . . . , Xdu is a basis of KrXsďd

over K). Additionally, since there is no constant non-zero polynomial in W , its
dimension is at most d. Since S is a set of d linearly independent polynomials in
W , it is a basis of W and dimpW q “ d.

5. Consider the following subspace of Kn :

U :“

#

pα1, . . . , αnq P Kn
|

n
ÿ

i“1

αi “ 0

+

,

D :“ tpα, . . . , αq P Kn
| α P Ku .

Determine a basis and compute the dimension of U,D,U X D, and U ` D.

Remark : Do not forget to consider the case where K is a field such that n ¨ 1 “ 0.

Lösung : For n “ 0 we have U “ D “ U XD “ U `D “ 0. These linear subspaces
both have dimension 0.

Now suppose n ě 1. Every element of the form pα, . . . , αq P D is a multiple of
v :“ p1, . . . , 1q. Since v ‰ 0, the set tvu is a minimal generating set of D or in
other words a basis of D. Hence we have dimpDq “ 1. Thereafter the n´1 vectors

v1 “ p1,´1, 0, . . . , 0q, v2 “ p0, 1,´1, 0, . . . , 0q, . . . vn´1 “ p0, . . . , 0, 1,´1q

are contained in U and linearly independent. In particular, we have dimpUq ě

n ´ 1. As p1, 0, . . . , 0q R U , we get dimpUq ă dim pKnq “ n and thus find that
dimpUq “ n ´ 1. As the vectors v1, . . . , vn´1 are linearly indepnendent and their
number is equal to the dimension of U , they form a basis of U .

If we have n ¨ 1 ‰ 0 in K, then v “ p1, . . . , 1q R U . In that case, we have U X

D “ 0, and hence ∅ dimpU X Dq “ 0. As U “ xv1, . . . , vn´1y we also find that
v, v1, . . . , vn´1 are linearly independent. This shows dimpU ` Dq ě n. But we
already have dimpU `V q ď dim pKnq “ n, and consequently conclude that U `D
has dimension n and admits the basis tv, v1, . . . , vn´1u. Of course the standard
basis of Kn is also a basis of U ` D

If we have n ¨ 1 “ 0 in K, then v “ p1, . . . , 1q P U , and hence D Ă U . In that case
we have U X D “ D and U ` D “ U .

5



6. Determine a basis and compute the dimension of the space

tf : R Ñ R | f is continuous ^ pf ` f2
“ 0qu.

Hint : Note that f, f 1, and f2 exist and are continuous. Moreover, you can use the
following result from Analysis: the function f : R Ñ R such that @x P R : fpxq “ 0
is the unique continuous solution to

"

f ` f2 “ 0
fp0q “ f 1p0q “ 0

Solution: To put the hint into different words : for every two times continuously
differentiable f : R Ñ R with fp0q “ 0, f 1p0q “ 0 and fpxq ` f2pxq “ 0@x P R, we
have fpxq “ 0@x P R. Now let V “ tf : R Ñ R | f is C2 and f ` f2 “ 0u and let
f P V . Set a :“ fp0q und b :“ f 1p0q. Also define gpxq :“ fpxq ´ a cospxq ´ b sinpxq.
We have gp0q “ 0, g1p0q “ 0 and g P V as sinpxq, cospxq P V . Thus, we have
gpxq “ 0@x P R. Therefore, we find fpxq “ a cospxq ` b sinpxq. Thus every element
of V is a linear combination of sinpxq and cospxq. These functions are linearly
independent elements over R and thus form a basis of V . We conclude that V has
dimension 2.
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