## Musterlösung Serie 8

1. Let $F$ be a field. Find a linear complement of the following subspaces in $M_{n \times n}(F)$ (see Serie 7 for definitions):
(a) The subspace of upper triangular matrices;
(b) The subspace of symmetric matrices.

## Solution:

(a) Let us denote $U$ the subspace of upper triangular matrices and denote $W$ the subspace of strictly lower triangular matrices, i.e $W$ is the set of all matrices $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}$ such that $a_{i j}=0$ whenever $i \leqslant j$. We let the reader check that this is indeed a linear subspace of $M_{n \times n}(F)$. Note that any matrix can be written as the sum of an upper triangular matrix and a strictly lower triangular matrix. As an illustration

$$
\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)=\left(\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0
\end{array}\right) .
$$

This shows that $U+W=M_{n \times n}(F)$. Moreover, since matrices from $U$ and matrices from $W$ do not have any non-zero entry in common, we do also have $U \cap W=\{0\}$. This shows that $W$ is a complement of $U$ in $M_{n \times n}(F)$.
(b) Denote $U$ the subspace of symmetric matrices and consider once again the space of strictly lower triangular matrices, denoted $W$. We show that $U+W=$ $M_{n \times n}(F)$. Let $C=\left(c_{i j}\right)_{1 \leqslant i, j \leqslant n} \in M_{n \times n}(F)$. Define $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}$ to be the symmetric matrix such that

$$
a_{i j}=c_{i j}, \quad \text { when } i \leqslant j .
$$

Also define $B=\left(b_{i j}\right)_{1 \leqslant i, j \leqslant n}$ to be the strictly lower triangular matrix such that

$$
b_{i j}=c_{i j}-c_{j i}, \quad \text { when } i>j .
$$

Now, we do have $C=A+B$.
Each symmetric matrix that is not the 0 matrix admits a non-vanishing entry on the diagonal or over the diagonal, while this is not the case for any matrix of $W$. This shows that $U \cap W=\{0\}$.
2. Let $b, c \in \mathbb{R}$ and let $\mathbb{R}[x]$ denote the space of polynomial functions of 1 variable with coefficients in $\mathbb{R}$. Define $T: \mathbb{R}[x] \rightarrow \mathbb{R}^{2}$ by

$$
T p=\left(3 p(4)+5 p^{\prime}(6)+b p(1) p(2), \int_{-1}^{2} x^{3} p(x) d x+c p(0)^{2}\right) .
$$

Show that $T$ is linear if and only if $b=c=0$.
Solution: If $b=c=0$, we have

$$
T p=\left(3 p(4)+5 p^{\prime}(6), \int_{-1}^{2} x^{3} p(x) d x\right)
$$

Note that evaluation is also linear: let $p, q \in \mathbb{R}[x]$ and let $\mu, \nu, a \in \mathbb{R}$. Then

$$
(\mu p+\nu q)(a)=\mu p(a)+\nu q(a) .
$$

Derivation is also a linear map $\mathbb{R}[x] \rightarrow \mathbb{R}[x]$ :

$$
(\mu p+\nu q)^{\prime}(x)=(\mu p)^{\prime}(x)+(\nu q)^{\prime}(x)=\mu p^{\prime}(x)+\nu q^{\prime}(x) .
$$

Finally,

$$
\int_{-1}^{2} x^{3}(\mu p+\nu q)(x) d x=\mu \int_{-1}^{2} x^{3} p(x) d x+\nu \int_{-1}^{2} x^{3} q(x) d x
$$

Therefore $T$ is linear.
Assume now that $b \neq 0$. Let $p, q \in \mathbb{R}[x]$ and $\mu, \nu \in \mathbb{R}$. Then

$$
\begin{aligned}
(p+q)(1)(p+q)(2) & =(p(1)+q(1))(p(2)+q(2)) \\
& =p(1) p(2)+p(1) q(2)+q(1) p(2)+q(1) q(2) .
\end{aligned}
$$

The right-hand side is in general different from $p(1) p(2)+q(1) q(2)$. Therefore the first factor is not linear when $b \neq 0$.
If finally $c \neq 0$, note that since

$$
(p+q)(0)^{2}=(p(0)+q(0))^{2}=p(0)^{2}+2 p(0) q(0)+q(0)^{2}
$$

the second factor is not linear. This shows the equivalence.
3. Suppose that $U$ and $V$ are both 4 -dimensional subspaces of $\mathbb{C}^{6}$. Prove that there exists 2 vectors in $U \cap V$ such that neither of these vectors is a scalar multiple of the other.
Solution: Assume that $U \cap V$ is one dimensional, generated by $w$. We can first extend $\{w\}$ to a basis of $U$. Let us note it $\mathcal{B}_{1}=\left\{w, u_{1}, u_{2}, u_{3}\right\}$. In parallel, extend $\{w\}$ to a basis of $V$ denoted $\mathcal{B}_{2}=\left\{w, v_{1}, v_{2}, v_{3}\right\}$. Finally, the set

$$
\mathcal{B}_{1} \cup \mathcal{B}_{2}=\left\{w, u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}\right\}
$$

is a basis of $U \cup V$. However, the above set contains 7 distinct vectors, so since $U+V \subseteq \mathbb{C}^{6}$, which is 6 -dimensional, we obtain a contradiction.
Aliter: We can apply the formula

$$
\operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)
$$

We have $U+V \subseteq \mathbb{C}^{6}$, hence

$$
6 \geqslant \operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)=8-\operatorname{dim}(U \cap V)
$$

We conclude that $\operatorname{dim}(U \cap V) \geqslant 2$ and therefore that there must exist 2 linearly independent vectors in $U \cap V$.
4. Suppose that $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent in $V$ and let $w \in V$. Prove that

$$
\operatorname{dim} \operatorname{Sp}\left(v_{1}+w, v_{2}+w, \ldots, v_{m}+w\right) \geqslant m-1
$$

Solution: Consider the set

$$
\begin{aligned}
& \left\{v_{1}+w, v_{2}+w-\left(v_{1}+w\right), \ldots, v_{m}+w-\left(v_{1}-w\right)\right\} \\
= & \left\{v_{1}+w, v_{2}-v_{1}, \ldots, v_{m}-v_{1}\right\} .
\end{aligned}
$$

We show that $\left\{v_{2}-v_{1}, \ldots, v_{m}-v_{1}\right\}$ is linearly independent. Indeed, assume that there exists $\left\{a_{i} \mid 2 \leqslant i \leqslant m\right\}$ such that

$$
\begin{gathered}
\sum_{i=2}^{m} a_{i}\left(v_{i}-v_{1}\right)=0 \\
\Longleftrightarrow \quad-\left(\sum_{i=2}^{m} a_{i}\right) v_{1}+\sum_{i=2}^{m} a_{i} v_{i}=0 .
\end{gathered}
$$

Since the set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent, we must have

$$
a_{i}=0, \quad 2 \leqslant i \leqslant m .
$$

So, we have proved that there is a set of $m-1$ linearly independent vectors in $\operatorname{Sp}\left(v_{1}+w, v_{2}+w, \ldots, v_{m}+w\right)$. Thus, we obtain the result.
5. Let $V$ be a vector space over a field $F$ and consider 3 linear subspaces $U_{1}, U_{2}, U_{3}$ such that $V=U_{1}+U_{2}+U_{3}$ and for $i, j \in\{1,2,3\}$ such that $i \neq j$, we have $U_{i} \cap U_{j}=\{0\}$.
Is it true that for any $v \in U_{1}+U_{2}+U_{3}$ there exists a unique triple $\left(u_{1}, u_{2}, u_{3}\right)$ with $u_{i} \in U_{i}$ such that $v=u_{1}+u_{2}+u_{3}$ ?

Solution: This is not true in general, we give a counterexample. Consider a field $F$ and the spaces

$$
\begin{aligned}
U_{1} & =\left\{(x, y, 0) \in F^{3} \mid x, y \in F\right\}, \\
U_{2} & =\left\{(0,0, z) \in F^{3} \mid z \in F\right\}, \\
U_{3} & =\left\{(0, y, y) \in F^{3} \mid y \in F\right\} .
\end{aligned}
$$

Clearly $F^{3}=U_{1}+U_{2}+U_{3}$ since for any $x, y, z \in F$

$$
(x, y, z)=(x, y, 0)+(0,0, z)+(0,0,0) .
$$

We do have $U_{i} \cap U_{j}=\{0\}$ whenever $i \neq j$. However,

$$
\begin{aligned}
& (0,0,0)=(0,0,0)+(0,0,0)+(0,0,0) \\
& (0,0,0)=(0,1,0)+(0,0,1)+(0,-1,-1)
\end{aligned}
$$

6. Let $V$ be a finite-dimensional vector space over a field $F$ and let

$$
V \supseteq U_{0} \supseteq U_{1} \supseteq U_{2} \supseteq \cdots \supseteq U_{k} \supseteq \cdots
$$

be an infinite sequence of nested subspaces.
(a) Show that this sequence stabilises, i.e. show that there exists a $N \in \mathbb{N}$ such that for all $n \geqslant N: U_{n}=U_{N}$.
(b) Is this still the case if we now assume that $V$ is infinite-dimensional?
(c) Assume that $V$ is infinite-dimensional and that $\operatorname{dim} U_{n} \geqslant 1$ for all $n \in \mathbb{N}$. What can you say about $\bigcap_{n \in \mathbb{N}} U_{n}$ ?

## Solution:

(a) Let $d:=\operatorname{dim}(V)$, since the subspaces in the given sequence are nested, we obtain the following decreasing sequence in $\mathbb{N}$ :

$$
d \geqslant \operatorname{dim}\left(U_{0}\right) \geqslant \operatorname{dim}\left(U_{1}\right) \geqslant \operatorname{dim}\left(U_{2}\right) \geqslant \cdots \geqslant \operatorname{dim}\left(U_{k}\right) \geqslant \cdots
$$

This is a monotonically decreasing sequence of natural numbers, hence it is bounded form below by 0 and has to converge. Namely, there exists $e \in \mathbb{N}$ and $N \in \mathbb{N}$ such that for all $n \geqslant N: e=\operatorname{dim}\left(U_{N}\right)=\operatorname{dim}\left(U_{n}\right)$. We conclude that for any such $n$ we have $U_{N}=U_{n}$.
(b) Not necessarily, the example developed in c) gives a counter example.
(c) For any vector space $V$, the constant sequence $U_{n}=V$ has intersection $V$.

Even though the dimension is bounded from the bottom, the intersection might be $\{0\}$. Indeed, consider the space $F[X]$ of polynomials with coefficients in $F$. Let $U_{0}=F[X]$ and let

$$
U_{i}=\operatorname{Sp}\left(\left\{X^{p} \mid p \geqslant i\right\}\right)
$$

For any $i \geqslant 0$, we do have $\operatorname{dim} U_{i} \geqslant 1$ since $X^{i} \in U_{i}$. Now, let $N \geqslant 0$. Then

$$
\bigcap_{n=0}^{N} U_{n}=U_{N}
$$

since the subspaces are nested. However, for any polynomial $p \in F[X] \backslash\{0\}$, there exists $d \geqslant 0$ such that $p \notin U_{d}$ (this will hold for any $\left.d>\operatorname{deg}(p)\right)$. This implies

$$
\bigcap_{n \geqslant 0} U_{n}=\{0\} .
$$

Multiple Choice Fragen. More than one answer can be correct.
Frage 1. Which of the following maps are linar?
$\checkmark f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(x+y, 2 x, 0)$

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(x+y, 2 x, 0)$
$\checkmark f: K^{3} \rightarrow K^{2},(x, y, z) \mapsto(\alpha x+\beta y+\gamma z, \delta x+\varepsilon y+\eta z)$ for fixed $\alpha, \beta, \gamma, \delta, \varepsilon, \eta$ in the field $K$

Frage 2. Which of the linear maps below can be written as $x \mapsto A x$, where $A$ is the matrix

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 0 \\
0 & 2
\end{array}\right)
$$

$\checkmark f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(x, y)=(2 x+y, x, 2 y)$

- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(x, y, z)=(2 x+y, x+2 z)$

