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Musterlösung Serie 9

1. Show that if V is a one-dimensional vector space over a fieldK and T P HomKpV, V q,
then there exists λ P K such that for all v P V : Tv “ λv. Explain then why an
isomorphism V Ñ K depends on a choice of basis, while one from HomKpV, V q to
K doesn’t.

Solution: Let v0 P V ∖ t0u. Since V is one-dimensional, tv0u is a basis of V . We
have Tv0 P V , so there exists λ P K such that Tv0 “ λv0. Now let v1 P V . For the
same reason, there exists µ P K such that v1 “ µv0. By linearity of T , we then
have

Tv1 “ T pµv0q “ µT pv0q “ µλv0 “ λpµv0q “ λv1.

Since v1 was arbitrary, this proves the statement.

Aliter : You have seen in the lectures that such a linear map T can be represented
by a matrix. Since a 1 ˆ 1 matrix is a scalar, this proves the statement.

Regarding the second part of the exercise, note that if we want to define a linear
isomorphism from V to K, we need to first specify the image of a certain basis.
Such a homomorphism is called “non-canonical”. On the other hand, we can define
a linear isomorphism

HompV, V q Ñ K
T ÞÑ λ, where λ is such that @v P V : Tv “ λv.

In this case, we did not need to pick a basis in order to define the isomorphism.
Such a homomorphism is called “canonical”.

2. Denote Rrxsd the set of polynomials over R of degree lower or equal to d. Suppose
that D P HomRpRrxs3,Rrxs2q is the differentiation map Dp “ p1. Find a basis of
Rrxs3 and a basis of Rrxs2 such that the matrix of D with respect to these bases
is

¨

˝

0 1 ´1 ´1
0 0 2 ´1
0 0 0 3

˛

‚

Solution: Consider the basis t1, 1` x, 1` x` x2, 1` x` x2 ` x3u of Rrxs3 and the
basis t1, 1 ` x, 1 ` x ` x2u of Rrxs2. We have

Dp1q “ 0 “ 0 ¨ 1 ` 0 ¨ p1 ` xq ` 0 ¨ p1 ` x ` x2q

Dp1 ` xq “ 1 “ 1 ¨ 1 ` 0 ¨ p1 ` xq ` 0 ¨ p1 ` x ` x2q

Dp1 ` x ` x2q “ 1 ` 2x “ ´1 ¨ 1 ` 2 ¨ p1 ` xq ` 0 ¨ p1 ` x ` x2q

Dp1 ` x ` x2 ` x3q “ 1 ` 2x ` 3x2 “ ´1 ¨ 1 ` ´1 ¨ p1 ` xq ` 3 ¨ p1 ` x ` x2q

Hence the matrix of D is the desired one with respect to these two bases.
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3. Let V,W be vector spaces over a field K. Suppose that U Ĺ V is a linear subspace
and let S be a non-trivial element of HomKpU,W q (i.e. we assume that S does not
map everything to 0). Define T : V Ñ W by

Tv “

"

Sv, if v P U
0, if v P V ∖ U

Is T a linear map?

Solution: Let u P U such that Su ‰ 0. Such a u exists by our assumption on S.
Let also v P V ∖ U (since U Ĺ V , this set is non-empty). We then observe that
u`v R U . Indeed, if it were the case, then there would exist some u1 P U such that
u ` v “ u1 ô v “ u1 ´ u P U , which is a contradiction to our choice of v. Hence,

T pu ` vq “ 0 ‰ Su ` 0 “ Tu ` Tv,

which shows that T isn’t linear.

4. Let U, V,W be vector spaces over a field K and let T : V Ñ W and S : W Ñ U
be linear maps.

(a) Prove that
rankpS ˝ T q ď minprankpSq, rankpT qq.

(b) Show that rankpS ˝ T q “ rankpSq whenever T is surjective.

(c) Show that rankpS ˝ T q “ rankpT q whenever S is injective.

Solution:

(a) Note that since T is linear, BildpT q is a subspace of W . We define the restric-
tion of S to BildpT q to be the linear map

S|BildpT q : BildpT q Ñ U
v ÞÑ Spvq

Now note that BildpS ˝ T q “ BildpS|BildpT qq Ă BildpSq. Hence

rankpS ˝ T q “ rankpS|BildpT qq ď rankpSq. (1)

On the other hand,

rankpT q “ dimpBildpT qq “ dimpKernpS|BildpT qqq ` rankpS|BildpT qq. (2)

Therefore,
rankpS ˝ T q “ rankpS|BildpT qq ď rankpT q.

This shows
rankpS ˝ T q ď mintrankpSq, rankpT qu.
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(b) If T is surjective, the subspace BildpT q is now the whole of W . Then

S|BildpT q “ S|W “ S

and by (1), we have

rankpS ˝ T q “ rankpS|BildpT qq “ rankpSq.

(c) If S is injective, we have dimpKernpSqq “ 0, so dimpKernpS|BildpT qqq “ 0.
Hence, by (2), we obtain

rankpT q “ rankpS|BildpT qq “ rankpS ˝ T q.

5. Let V be a vector space. An Endomorphism P : V Ñ V satisfying P 2 :“ P ˝P “ P
is called idempotent or a projection. Show:

(a) For ever projection P , its image BildpP q is a linear complement of KernpP q

in V .

(b) For any subvectorspaces W1,W2 Ă V , such that W1 is a complement of W2

in V , there exists a unique projection P : V Ñ V with

KernpP q “ W1 und BildpP q “ W2.

Lösung :

(a) Let P : V Ñ V be a projection and define

W1 :“ KernpP q and W2 :“ BildpP q .

We need to show that W1 ` W2 “ V and W1 X W2 “ t0u.

For any v P V we have

P pv ´ P pvqq “ P pvq ´ P 2
pvq “ P pvq ´ P pvq “ 0,

hence v ´ P pvq P KernpP q “ W1. Moreover, we have P pvq P BildpP q “ W2.
Thus, we get

v “ pv ´ P pvqq ` P pvq P W1 ` W2,

and W1 ` W2 “ V .

Now let v P W1 X W2. Since v lies in the image of P , there exists a w P V
with P pwq “ v. Application of P on both sides of the equation yields v “

P pwq “ P 2pwq “ P pvq. As v is also contained in the kernel of P , we have
v “ P pvq “ 0. Thus, we get W1 X W2 “ t0u.
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(b) Let W1,W2 Ď V be any subvectorspaces of V satisfying V “ W1 ` W2 and
W1 X W2 “ t0u. For any v P V there exist unique w1 P W1 and w2 P W2 such
that we have v “ w1 ` w2. Consider the map P : V Ñ V , which maps v P V
to this w2 P W2. One can show by explicit computations that P is linear and
a projection with W1 “ KernpP q and W2 “ BildpP q. We leave this to the
reader.

It remains to show that P is unique. Let P 1 be another projection with
W1 “ KernpP 1q and W2 “ BildpP 1q. Then we have

P |W1 “ 0 “ P 1
|W1 .

For an arbitrary element v P W2 there exist w,w1 P V such that P pwq “ v
and P 1pw1q “ v. This yields

P pvq ´ P 1
pvq “ P pP pwqq ´ P 1

pP 1
pw1

qq “ P pwq ´ P 1
pw1

q “ v ´ v “ 0

and hence we get P |W2 “ P 1|W2 . As we have V “ W1 ` W2 it follows that
P “ P 1.

6. Let f : V Ñ W be a linear map of K-vector spaces. Show:

(a) For every subvectorspace W 1 Ă W the preimage

f´1
pW 1

q :“ tv P V | fpvq P W 1
u

is a subvectorspace of V .

(b) We have

dim f´1
pW 1

q “ dimKernpfq ` dim pBildpfq X W 1
q .

Solution: Let V 1 :“ f´1pW 1q.

(a) We need to show that V 1 is non empty and that for arbitrary x, y P V 1 and
α P K the sum x ` y and the product αx is again contained in V 1.

As fp0q “ 0 P W 1, the vector 0 is contained V 1 and thus V 1 is non empty.
Linearity of f yields

fpx ` yq “ fpxq ` fpyq and fpαxq “ αfpxq .

As fpxq, fpyq P W 1, we get folgt from the axioms of subvectorspaces that
fpxq ` fpyq and αfpxq are again contained in W 1. Therefore, we have that
x ` y and αx are contained in V 1.

Note. Is it also the case for the image of a linear subspace via a linear map?
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(b) The definition of V 1 yields that there exists a map

f 1 : V 1
Ñ W 1, v1

ÞÑ f 1
pv1

q :“ fpvq.

As f is linear, the newly defined f 1 is linear as well. We get

dimpV 1
q “ dimpKernpf 1

qq ` dimpBildpf 1
qq. (3)

Since 0 P W 1, it follows that Kernpfq Ă V 1. Plugging in the definition, we get
Kernpf 1q “ Kernpfq. Moreover, we have

Bildpf 1
q “ tw P W 1

| Dv P V 1 : f 1
pvq “ wu

“ tw P W 1
| Dv P V : fpvq “ wu

“ tw P W | Dv P V : fpvq “ w und w P W 1
u

“ Bildpfq X W 1 .

Plugging this into (3), we get

dimpV 1
q “ dimpKernpfqq ` dimpBildpfq X W 1

q .

Exercises that will not be presented

7. Let V,W be vector spaces over a field K and let T : V Ñ W be an isomorphism
of vector spaces. Show that:

(a) T maps linearly independent sets to linearly independent sets;

(b) T maps spanning sets of V to spanning sets of W ;

(c) T maps bases to bases.

Lösung :

(a) Assume that tvi | 1 ď i ď nu is linearly independent. We prove that tT pviqu

is linearly independent. Assume that there exists tai | 1 ď i ď nu Ă K such
that

ÿ

1ďiďn

aiT pviq “ 0 ô T

˜

ÿ

1ďiďn

aivi

¸

“ 0.

This is equivalent to
ř

1ďiďn aivi “ 0 since T is an isomorphism. Since we
assumed tvi | 1 ď i ď nu to be linearly independent, this is equivalent to
@i : ai “ 0. Summing up, we have

ÿ

1ďiďn

aiT pviq “ 0 ô @1 ď i ď n : ai “ 0.

Hence, tT pviq | 1 ď i ď nu is linearly independent.
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(b) Assume that S “ tv1, v2, . . . , vru is a spanning set of V . Let w be an arbitrary
element of W . Since T is an isomorphism, w admits a unique preimage v in
V . Since V “ Sppv1, . . . , vrq, we can write v uniquely as v “

ř

1ďiďr aivi for
tai | 1 ď i ď ru Ă K. Therefore,

w “ T pvq “ T

˜

ÿ

1ďiďr

aivi

¸

“
ÿ

1ďiďr

aiT pviq

Since w was arbitrary, this shows W “ SpptT pviq | 1 ď i ď ruq.

(c) Since a basis is a linearly independent spanning subset. The combination of
(a) and (b) shows (c).

8. Let V,W be vector spaces over Q. We say that a map f : V Ñ W is additive, if

@x P V @y P V : fpx ` yq “ fpxq ` fpyq.

Show that
HomQpV,W q “ tf : V Ñ W | f is additiveu.

Solutions : We want to show that any additive map f : V Ñ W also satisfies
@q P Q, @v P V : fpqvq “ qfpvq. Let v P V . We first note that

fp0q “ fp0 ` 0q “ fp0q ` fp0q ùñ fp0q “ 0.

It directly follows that 0 “ fpv ` p´vqq “ fpvq ` fp´vq. Hence, fp´vq is the
additive inverse of fpvq in W .

We continue by showing by induction that for any m P N, fpmvq “ mfpvq. The
above shows the base step m “ 0. We now assumes that it is proved for all m with
0 ď m ď k and we prove it for k ` 1. We have

fppk ` 1qvq “ fpkv ` vq “ fpkvq ` fpvq “ kfpvq ` fpvq “ pk ` 1qfpvq,

where we used the induction hypothesis to obtain the second-to-last equality. Now,
for any negative integer n P Z, we do have ´n P N. So,

fpnvq “ fpp´nqp´vqq “ p´nqfp´vq “ p´nqp´fpvqq “ nfpvq.

We have shown that fpnvq “ nfpvq for all n P Z.
Finally, notice that for any n P Z ∖ t0u,

n

n
fpvq “ fpvq “ f

´n

n
v

¯

“ nf

ˆ

1

n
v

˙

ô n

ˆ

1

n
fpvq ´ f

ˆ

1

n
v

˙˙

“ 0.

This is equivalent to 1
n
fpvq “ f

`

1
n
v

˘

.
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We conclude that for all m P Z, for all n P Z ∖ t0u, for all v P V :

f
´m

n
v

¯

“ mf

ˆ

1

n
v

˙

“
m

n
f pvq .

Since any q P Q can be written as q “ m
n
for some m P Z and some n P Z ∖ t0u,

we have proved that f is Q-linear.

Multiple Choice Questions. More than one answer can be correct.

Question 1. Let A and B be bases of R2 and denote te1, e2u the standard basis.
Let f : R2 Ñ R2 be the linear map given by the matrix

M “

ˆ

0 ´1
1 0

˙

with respect to A as a basis of the domain and B as a basis of the codomain.
Which of the following statements are true?

✓ If A “ B “ te1, e2u, f is a rotation around the origin.

✓ If A is the standard basis and B “ te2,´e1u, f is a symmetry with respect
ot the point p0, 0q.

✓ If A is the standard basis and f is the identity, then B “ t´e2, e1u.

✓ If B id the standard basis and f is the symmetry with respect to the y-axis,
then A “ te2, e1u.

Question 2. Which of the following statements are true?

✓ Let V be an n-dimensional vector space over R. The map V Ñ Rn, v ÞÑ rvsB,
that sends any vector v P V to its coordinate vector with respect to a basis
B of Rn is linear.

• Let f : R2 Ñ R2 be linear with Kernpfq ‰ t0u and Bildpfq ‰ t0u. Then there
exists a non-trivial vector v that is in the kernel and in the image of f .

✓ If the kernel of a linear map f : Rn Ñ Rn is trivial, the map is invertible.
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