Musterlösung Serie 9

1. Show that if V is a one-dimensional vector space over a field K and $T \in \operatorname{Hom}_{K}(V, V)$, then there exists $\lambda \in K$ such that for all $v \in V: T v=\lambda v$. Explain then why an isomorphism $V \rightarrow K$ depends on a choice of basis, while one from $\operatorname{Hom}_{K}(V, V)$ to K doesn't.
Solution: Let $v_{0} \in V \backslash\{0\}$. Since V is one-dimensional, $\left\{v_{0}\right\}$ is a basis of V. We have $T v_{0} \in V$, so there exists $\lambda \in K$ such that $T v_{0}=\lambda v_{0}$. Now let $v_{1} \in V$. For the same reason, there exists $\mu \in K$ such that $v_{1}=\mu v_{0}$. By linearity of T, we then have

$$
T v_{1}=T\left(\mu v_{0}\right)=\mu T\left(v_{0}\right)=\mu \lambda v_{0}=\lambda\left(\mu v_{0}\right)=\lambda v_{1} .
$$

Since v_{1} was arbitrary, this proves the statement.
Aliter: You have seen in the lectures that such a linear map T can be represented by a matrix. Since a 1×1 matrix is a scalar, this proves the statement.
Regarding the second part of the exercise, note that if we want to define a linear isomorphism from V to K, we need to first specify the image of a certain basis. Such a homomorphism is called "non-canonical". On the other hand, we can define a linear isomorphism

$$
\begin{array}{cl}
\operatorname{Hom}(V, V) & \rightarrow K \\
T & \mapsto \lambda, \text { where } \lambda \text { is such that } \forall v \in V: T v=\lambda v .
\end{array}
$$

In this case, we did not need to pick a basis in order to define the isomorphism. Such a homomorphism is called "canonical".
2. Denote $\mathbb{R}[x]_{d}$ the set of polynomials over \mathbb{R} of degree lower or equal to d. Suppose that $D \in \operatorname{Hom}_{\mathbb{R}}\left(\mathbb{R}[x]_{3}, \mathbb{R}[x]_{2}\right)$ is the differentiation map $D p=p^{\prime}$. Find a basis of $\mathbb{R}[x]_{3}$ and a basis of $\mathbb{R}[x]_{2}$ such that the matrix of D with respect to these bases is

$$
\left(\begin{array}{cccc}
0 & 1 & -1 & -1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Solution: Consider the basis $\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}$ of $\mathbb{R}[x]_{3}$ and the basis $\left\{1,1+x, 1+x+x^{2}\right\}$ of $\mathbb{R}[x]_{2}$. We have

$$
\begin{array}{clllll}
D(1) & = & 0 & = & 0 \cdot 1+0 \cdot(1+x)+0 \cdot\left(1+x+x^{2}\right) \\
D(1+x) & = & 1 & = & 1 \cdot 1+0 \cdot(1+x)+0 \cdot\left(1+x+x^{2}\right) \\
D\left(1+x+x^{2}\right) & = & 1+2 x & = & -1 \cdot 1+2 \cdot(1+x)+0 \cdot\left(1+x+x^{2}\right) \\
D\left(1+x+x^{2}+x^{3}\right) & = & 1+2 x+3 x^{2} & = & -1 \cdot 1+-1 \cdot(1+x)+3 \cdot\left(1+x+x^{2}\right)
\end{array}
$$

Hence the matrix of D is the desired one with respect to these two bases.
3. Let V, W be vector spaces over a field K. Suppose that $U \subsetneq V$ is a linear subspace and let S be a non-trivial element of $\operatorname{Hom}_{K}(U, W)$ (i.e. we assume that S does not map everything to 0). Define $T: V \rightarrow W$ by

$$
T v=\left\{\begin{aligned}
S v, & \text { if } v \in U \\
0, & \text { if } v \in V \backslash U
\end{aligned}\right.
$$

Is T a linear map?
Solution: Let $u \in U$ such that $S u \neq 0$. Such a u exists by our assumption on S. Let also $v \in V \backslash U$ (since $U \subsetneq V$, this set is non-empty). We then observe that $u+v \notin U$. Indeed, if it were the case, then there would exist some $u^{\prime} \in U$ such that $u+v=u^{\prime} \Leftrightarrow v=u^{\prime}-u \in U$, which is a contradiction to our choice of v. Hence,

$$
T(u+v)=0 \neq S u+0=T u+T v
$$

which shows that T isn't linear.
4. Let U, V, W be vector spaces over a field K and let $T: V \rightarrow W$ and $S: W \rightarrow U$ be linear maps.
(a) Prove that

$$
\operatorname{rank}(S \circ T) \leqslant \min (\operatorname{rank}(S), \operatorname{rank}(T))
$$

(b) Show that $\operatorname{rank}(S \circ T)=\operatorname{rank}(S)$ whenever T is surjective.
(c) Show that $\operatorname{rank}(S \circ T)=\operatorname{rank}(T)$ whenever S is injective.

Solution:

(a) Note that since T is linear, $\operatorname{Bild}(T)$ is a subspace of W. We define the restriction of S to $\operatorname{Bild}(T)$ to be the linear map

$$
\begin{array}{cccc}
\left.S\right|_{\operatorname{Bild}(T)}: & \operatorname{Bild}(T) & \rightarrow & U \\
v & \mapsto & \mapsto(v)
\end{array}
$$

Now note that $\operatorname{Bild}(S \circ T)=\operatorname{Bild}\left(\left.S\right|_{\operatorname{Bild}(T)}\right) \subset \operatorname{Bild}(S)$. Hence

$$
\begin{equation*}
\operatorname{rank}(S \circ T)=\operatorname{rank}\left(\left.S\right|_{\operatorname{Bild}(T)}\right) \leqslant \operatorname{rank}(S) \tag{1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\operatorname{rank}(T)=\operatorname{dim}(\operatorname{Bild}(T))=\operatorname{dim}\left(\operatorname{Kern}\left(\left.S\right|_{\operatorname{Bild}(T)}\right)\right)+\operatorname{rank}\left(\left.S\right|_{\operatorname{Bild}(T)}\right) \tag{2}
\end{equation*}
$$

Therefore,

$$
\operatorname{rank}(S \circ T)=\operatorname{rank}\left(\left.S\right|_{\operatorname{Bild}(T)}\right) \leqslant \operatorname{rank}(T)
$$

This shows

$$
\operatorname{rank}(S \circ T) \leqslant \min \{\operatorname{rank}(S), \operatorname{rank}(T)\}
$$

(b) If T is surjective, the subspace $\operatorname{Bild}(T)$ is now the whole of W. Then

$$
\left.S\right|_{\operatorname{Bild}(T)}=\left.S\right|_{W}=S
$$

and by (1), we have

$$
\operatorname{rank}(S \circ T)=\operatorname{rank}\left(\left.S\right|_{\operatorname{Bild}(T)}\right)=\operatorname{rank}(S)
$$

(c) If S is injective, we have $\operatorname{dim}(\operatorname{Kern}(S))=0$, so $\operatorname{dim}\left(\operatorname{Kern}\left(\left.S\right|_{\operatorname{Bild}(T)}\right)\right)=0$. Hence, by (2), we obtain

$$
\operatorname{rank}(T)=\operatorname{rank}\left(\left.S\right|_{\operatorname{Bild}(T)}\right)=\operatorname{rank}(S \circ T)
$$

5. Let V be a vector space. An Endomorphism $P: V \rightarrow V$ satisfying $P^{2}:=P \circ P=P$ is called idempotent or a projection. Show:
(a) For ever projection P, its image $\operatorname{Bild}(P)$ is a linear complement of $\operatorname{Kern}(P)$ in V.
(b) For any subvectorspaces $W_{1}, W_{2} \subset V$, such that W_{1} is a complement of W_{2} in V, there exists a unique projection $P: V \rightarrow V$ with

$$
\operatorname{Kern}(P)=W_{1} \quad \text { und } \quad \operatorname{Bild}(P)=W_{2}
$$

Lösung:
(a) Let $P: V \rightarrow V$ be a projection and define

$$
W_{1}:=\operatorname{Kern}(P) \quad \text { and } \quad W_{2}:=\operatorname{Bild}(P) .
$$

We need to show that $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}=\{0\}$.
For any $v \in V$ we have

$$
P(v-P(v))=P(v)-P^{2}(v)=P(v)-P(v)=0
$$

hence $v-P(v) \in \operatorname{Kern}(P)=W_{1}$. Moreover, we have $P(v) \in \operatorname{Bild}(P)=W_{2}$. Thus, we get

$$
v=(v-P(v))+P(v) \in W_{1}+W_{2},
$$

and $W_{1}+W_{2}=V$.
Now let $v \in W_{1} \cap W_{2}$. Since v lies in the image of P, there exists a $w \in V$ with $P(w)=v$. Application of P on both sides of the equation yields $v=$ $P(w)=P^{2}(w)=P(v)$. As v is also contained in the kernel of P, we have $v=P(v)=0$. Thus, we get $W_{1} \cap W_{2}=\{0\}$.
(b) Let $W_{1}, W_{2} \subseteq V$ be any subvectorspaces of V satisfying $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{0\}$. For any $v \in V$ there exist unique $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ such that we have $v=w_{1}+w_{2}$. Consider the map $P: V \rightarrow V$, which maps $v \in V$ to this $w_{2} \in W_{2}$. One can show by explicit computations that P is linear and a projection with $W_{1}=\operatorname{Kern}(P)$ and $W_{2}=\operatorname{Bild}(P)$. We leave this to the reader.
It remains to show that P is unique. Let P^{\prime} be another projection with $W_{1}=\operatorname{Kern}\left(P^{\prime}\right)$ and $W_{2}=\operatorname{Bild}\left(P^{\prime}\right)$. Then we have

$$
\left.P\right|_{W_{1}}=0=\left.P^{\prime}\right|_{W_{1}} .
$$

For an arbitrary element $v \in W_{2}$ there exist $w, w^{\prime} \in V$ such that $P(w)=v$ and $P^{\prime}\left(w^{\prime}\right)=v$. This yields

$$
P(v)-P^{\prime}(v)=P(P(w))-P^{\prime}\left(P^{\prime}\left(w^{\prime}\right)\right)=P(w)-P^{\prime}\left(w^{\prime}\right)=v-v=0
$$

and hence we get $\left.P\right|_{W_{2}}=\left.P^{\prime}\right|_{W_{2}}$. As we have $V=W_{1}+W_{2}$ it follows that $P=P^{\prime}$.
6. Let $f: V \rightarrow W$ be a linear map of K-vector spaces. Show:
(a) For every subvectorspace $W^{\prime} \subset W$ the preimage

$$
f^{-1}\left(W^{\prime}\right):=\left\{v \in V \mid f(v) \in W^{\prime}\right\}
$$

is a subvectorspace of V.
(b) We have

$$
\operatorname{dim} f^{-1}\left(W^{\prime}\right)=\operatorname{dim} \operatorname{Kern}(f)+\operatorname{dim}\left(\operatorname{Bild}(f) \cap W^{\prime}\right)
$$

Solution: Let $V^{\prime}:=f^{-1}\left(W^{\prime}\right)$.
(a) We need to show that V^{\prime} is non empty and that for arbitrary $x, y \in V^{\prime}$ and $\alpha \in K$ the sum $x+y$ and the product αx is again contained in V^{\prime}.
As $f(0)=0 \in W^{\prime}$, the vector 0 is contained V^{\prime} and thus V^{\prime} is non empty. Linearity of f yields

$$
f(x+y)=f(x)+f(y) \quad \text { and } \quad f(\alpha x)=\alpha f(x) .
$$

As $f(x), f(y) \in W^{\prime}$, we get folgt from the axioms of subvectorspaces that $f(x)+f(y)$ and $\alpha f(x)$ are again contained in W^{\prime}. Therefore, we have that $x+y$ and αx are contained in V^{\prime}.
Note. Is it also the case for the image of a linear subspace via a linear map?
(b) The definition of V^{\prime} yields that there exists a map

$$
f^{\prime}: V^{\prime} \rightarrow W^{\prime}, v^{\prime} \mapsto f^{\prime}\left(v^{\prime}\right):=f(v)
$$

As f is linear, the newly defined f^{\prime} is linear as well. We get

$$
\begin{equation*}
\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}\left(\operatorname{Kern}\left(f^{\prime}\right)\right)+\operatorname{dim}\left(\operatorname{Bild}\left(f^{\prime}\right)\right) \tag{3}
\end{equation*}
$$

Since $0 \in W^{\prime}$, it follows that $\operatorname{Kern}(f) \subset V^{\prime}$. Plugging in the definition, we get $\operatorname{Kern}\left(f^{\prime}\right)=\operatorname{Kern}(f)$. Moreover, we have

$$
\begin{aligned}
\operatorname{Bild}\left(f^{\prime}\right) & =\left\{w \in W^{\prime} \mid \exists v \in V^{\prime}: f^{\prime}(v)=w\right\} \\
& =\left\{w \in W^{\prime} \mid \exists v \in V: f(v)=w\right\} \\
& =\left\{w \in W \mid \exists v \in V: f(v)=w \text { und } w \in W^{\prime}\right\} \\
& =\operatorname{Bild}(f) \cap W^{\prime} .
\end{aligned}
$$

Plugging this into (3), we get

$$
\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}(\operatorname{Kern}(f))+\operatorname{dim}\left(\operatorname{Bild}(f) \cap W^{\prime}\right)
$$

Exercises that will not be presented

7. Let V, W be vector spaces over a field K and let $T: V \rightarrow W$ be an isomorphism of vector spaces. Show that:
(a) T maps linearly independent sets to linearly independent sets;
(b) T maps spanning sets of V to spanning sets of W;
(c) T maps bases to bases.

Lösung:

(a) Assume that $\left\{v_{i} \mid 1 \leqslant i \leqslant n\right\}$ is linearly independent. We prove that $\left\{T\left(v_{i}\right)\right\}$ is linearly independent. Assume that there exists $\left\{a_{i} \mid 1 \leqslant i \leqslant n\right\} \subset K$ such that

$$
\sum_{1 \leqslant i \leqslant n} a_{i} T\left(v_{i}\right)=0 \Leftrightarrow T\left(\sum_{1 \leqslant i \leqslant n} a_{i} v_{i}\right)=0 .
$$

This is equivalent to $\sum_{1 \leqslant i \leqslant n} a_{i} v_{i}=0$ since T is an isomorphism. Since we assumed $\left\{v_{i} \mid 1 \leqslant i \leqslant n\right\}$ to be linearly independent, this is equivalent to $\forall i: a_{i}=0$. Summing up, we have

$$
\sum_{1 \leqslant i \leqslant n} a_{i} T\left(v_{i}\right)=0 \Leftrightarrow \forall 1 \leqslant i \leqslant n: a_{i}=0 .
$$

Hence, $\left\{T\left(v_{i}\right) \mid 1 \leqslant i \leqslant n\right\}$ is linearly independent.
(b) Assume that $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a spanning set of V. Let w be an arbitrary element of W. Since T is an isomorphism, w admits a unique preimage v in V. Since $V=\operatorname{Sp}\left(v_{1}, \ldots, v_{r}\right)$, we can write v uniquely as $v=\sum_{1 \leqslant i \leqslant r} a_{i} v_{i}$ for $\left\{a_{i} \mid 1 \leqslant i \leqslant r\right\} \subset K$. Therefore,

$$
w=T(v)=T\left(\sum_{1 \leqslant i \leqslant r} a_{i} v_{i}\right)=\sum_{1 \leqslant i \leqslant r} a_{i} T\left(v_{i}\right)
$$

Since w was arbitrary, this shows $W=\operatorname{Sp}\left(\left\{T\left(v_{i}\right) \mid 1 \leqslant i \leqslant r\right\}\right)$.
(c) Since a basis is a linearly independent spanning subset. The combination of (a) and (b) shows (c).
8. Let V, W be vector spaces over \mathbb{Q}. We say that a map $f: V \rightarrow W$ is additive, if

$$
\forall x \in V \forall y \in V: f(x+y)=f(x)+f(y) .
$$

Show that

$$
\operatorname{Hom}_{\mathbb{Q}}(V, W)=\{f: V \rightarrow W \mid f \text { is additive }\} .
$$

Solutions: We want to show that any additive map $f: V \rightarrow W$ also satisfies $\forall q \in \mathbb{Q}, \forall v \in V: f(q v)=q f(v)$. Let $v \in V$. We first note that

$$
f(0)=f(0+0)=f(0)+f(0) \Longrightarrow f(0)=0
$$

It directly follows that $0=f(v+(-v))=f(v)+f(-v)$. Hence, $f(-v)$ is the additive inverse of $f(v)$ in W.
We continue by showing by induction that for any $m \in \mathbb{N}, f(m v)=m f(v)$. The above shows the base step $m=0$. We now assumes that it is proved for all m with $0 \leqslant m \leqslant k$ and we prove it for $k+1$. We have

$$
f((k+1) v)=f(k v+v)=f(k v)+f(v)=k f(v)+f(v)=(k+1) f(v),
$$

where we used the induction hypothesis to obtain the second-to-last equality. Now, for any negative integer $n \in \mathbb{Z}$, we do have $-n \in \mathbb{N}$. So,

$$
f(n v)=f((-n)(-v))=(-n) f(-v)=(-n)(-f(v))=n f(v) .
$$

We have shown that $f(n v)=n f(v)$ for all $n \in \mathbb{Z}$.
Finally, notice that for any $n \in \mathbb{Z} \backslash\{0\}$,

$$
\frac{n}{n} f(v)=f(v)=f\left(\frac{n}{n} v\right)=n f\left(\frac{1}{n} v\right) \Leftrightarrow n\left(\frac{1}{n} f(v)-f\left(\frac{1}{n} v\right)\right)=0 .
$$

This is equivalent to $\frac{1}{n} f(v)=f\left(\frac{1}{n} v\right)$.

We conclude that for all $m \in \mathbb{Z}$, for all $n \in \mathbb{Z} \backslash\{0\}$, for all $v \in V$:

$$
f\left(\frac{m}{n} v\right)=m f\left(\frac{1}{n} v\right)=\frac{m}{n} f(v) .
$$

Since any $q \in \mathbb{Q}$ can be written as $q=\frac{m}{n}$ for some $m \in \mathbb{Z}$ and some $n \in \mathbb{Z} \backslash\{0\}$, we have proved that f is \mathbb{Q}-linear.

Multiple Choice Questions. More than one answer can be correct.
Question 1. Let \mathcal{A} and \mathcal{B} be bases of \mathbb{R}^{2} and denote $\left\{e_{1}, e_{2}\right\}$ the standard basis. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given by the matrix

$$
M=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

with respect to \mathcal{A} as a basis of the domain and \mathcal{B} as a basis of the codomain. Which of the following statements are true?
\checkmark If $\mathcal{A}=\mathcal{B}=\left\{e_{1}, e_{2}\right\}, f$ is a rotation around the origin.
\checkmark If \mathcal{A} is the standard basis and $\mathcal{B}=\left\{e_{2},-e_{1}\right\}, f$ is a symmetry with respect ot the point $(0,0)$.
\checkmark If \mathcal{A} is the standard basis and f is the identity, then $\mathcal{B}=\left\{-e_{2}, e_{1}\right\}$.
\checkmark If \mathcal{B} id the standard basis and f is the symmetry with respect to the y-axis, then $A=\left\{e_{2}, e_{1}\right\}$.

Question 2. Which of the following statements are true?
\checkmark Let V be an n-dimensional vector space over \mathbb{R}. The map $V \rightarrow \mathbb{R}^{n}, v \mapsto[v]_{\mathcal{B}}$, that sends any vector $v \in V$ to its coordinate vector with respect to a basis \mathcal{B} of \mathbb{R}^{n} is linear.

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear with $\operatorname{Kern}(f) \neq\{0\}$ and $\operatorname{Bild}(f) \neq\{0\}$. Then there exists a non-trivial vector v that is in the kernel and in the image of f.
\checkmark If the kernel of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is trivial, the map is invertible.

