Musterlösung Serie 10

1. Consider the real vector space $M_{2 \times 2}(\mathbb{R})$.
(a) Compute the square of

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(b) Find a formula for the entries of the n-th power of $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ for all $n \in \mathbb{N}$.

Solution:
(a) We have

$$
A^{2}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & d^{2}+b c
\end{array}\right) .
$$

(b) We show by induction that for all $n \geqslant 1$

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

For $n=1$, we do not have anything to prove. Mow let $n \geqslant 1$ and assume that we have proved it for all $k \leqslant n$. We have

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{n+1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{n} \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & n+1 \\
0 & 1
\end{array}\right)
$$

where we used the induction hypothesis to obtain the second-to-last equality.
2 . Let $\mathbb{R}[X]_{n}$ be the vectorspace of all polynomials of degree $\leqslant n$ with real coefficients.
(a) Show that

$$
F: \mathbb{R}[x]_{n} \rightarrow \mathbb{R}[x]_{n}, \quad p \mapsto p^{\prime \prime}+p^{\prime}
$$

is a linear map, where p^{\prime} denotes the derivative of p.
(b) Determine the matrix of F with respect to the basis $\left(1, x, \ldots, x^{n}\right)$ of $\mathbb{R}[X]_{n}$.

Solution:

(a) For any $p, q \in \mathbb{R}[X]_{n}$, for any $\lambda \in \mathbb{R}$, we have

$$
F(p+\lambda q)=(p+\lambda q)^{\prime \prime}+(p+\lambda q)^{\prime}=p^{\prime \prime}+\lambda q^{\prime \prime}+p^{\prime}+\lambda q^{\prime} .
$$

Rearranging, we obtain $F(p+\lambda q)=F(p)+\lambda F(q)$. We conclude that F is linear.
(b) We compute

$$
F\left(x^{i}\right)=\left\{\begin{array}{rc}
0, & \text { if } i=0 \\
1, & \text { if } i=1 \\
i(i-1) x^{i-2}+i x^{i-1}, & \text { if } i \geqslant 2
\end{array}\right.
$$

Denoting $\mathcal{B}=\left\{1, x, x^{2}, \cdots, x^{n}\right\}$ the standard basis of $\mathbb{R}[x]_{n}$, we write it as

$$
{ }_{\mathcal{B}}[F]_{\mathcal{B}}=\left((j-1)(j-2) \delta_{i, j-2}+(j-1) \delta_{i, j-1}\right)_{1 \leqslant i, j \leqslant n+1} .
$$

In the above notation everything is offset by -1 since the power of the polynomials in the basis start with 0 but the indexing of the matrix starts with 1. More explicitly, it will look as follows:

$$
\mathcal{B}_{\mathcal{B}}[F]_{\mathcal{B}}=\left(\begin{array}{cccccc}
0 & 1 & 2 & 0 & \cdots & 0 \\
0 & 0 & 2 & 6 & \cdots & 0 \\
0 & 0 & 0 & 3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & n(n-1) \\
0 & 0 & 0 & 0 & \cdots & n \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

3. Let K be a field.
(a) Consider the matrices

$$
A=\left(\begin{array}{cc}
A_{1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & A_{2}
\end{array}\right) \in M_{n \times n}(K)
$$

with $A_{1} \in M_{k \times k}(K)$ and $A_{2} \in M_{(n-k) \times(n-k)}(K)$ for some $k \geqslant 1$, and

$$
B=\left(\begin{array}{cc}
B_{1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & B_{2}
\end{array}\right) \in M_{n \times n}(K)
$$

with $B_{1} \in M_{k \times k}(K)$ and $B_{2} \in M_{(n-k) \times(n-k)}(K)$. Show that

$$
A \cdot B=\left(\begin{array}{cc}
A_{1} \cdot B_{1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & A_{2} \cdot B_{2}
\end{array}\right)
$$

(b) Let A be defined as above and assume that A_{1}, respectively A_{2}, is invertible as an element of $M_{k \times k}(K)$, respectively $M_{(n-k) \times(n-k)}(K)$. Show that A is invertible.
(c) Consider the space U of upper triangular matrices in $M_{n \times n}(K)$. Show that the product of 2 elements of U is in U.

Solution:

(a) Let us denote $C:=A \cdot B$. We will write $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$. We recall the product formula:

$$
\forall 1 \leqslant i, j \leqslant n: \quad c_{i j}=\sum_{\ell=1}^{n} a_{i \ell} b_{\ell j} .
$$

Let us divide the matrices into the quadrants

$$
\begin{array}{cc}
1 \leqslant i, j \leqslant k, & 1 \leqslant i \leqslant k \wedge k<j \leqslant n, \\
k<i \leqslant n \wedge 1 \leqslant j \leqslant k, & k<i, j \leqslant n .
\end{array}
$$

We treat the cases separately.
If $1 \leqslant i, j \leqslant k$, we have

$$
c_{i j}=\sum_{\ell=1}^{k} a_{i \ell} b_{\ell j}+\sum_{\ell=k+1}^{n} 0 \cdot 0=\sum_{\ell=1}^{k} a_{i \ell} b_{\ell j} .
$$

The last sum is the formula to compute an entry of the product $A_{1} \cdot B_{1}$ since i, j are arbitrary in $\{1, \ldots, k\}$.
We proceed similarly for the 3 other quadrants and obtain the formula.
(b) Denote A_{i}^{-1} the inverse of $A_{i}, i=1,2$ and define

$$
B:=\left(\begin{array}{cc}
A_{1}^{-1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & A_{2}^{-1}
\end{array}\right) .
$$

By a),

$$
A \cdot B=\left(\begin{array}{ll}
A_{1} \cdot A_{1}^{-1} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & A_{2} \cdot A_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
I_{k} & 0_{k \times(n-k)} \\
0_{(n-k) \times k} & I_{n-k}
\end{array}\right)=I_{n},
$$

where $I_{\ell}, 1 \leqslant \ell \leqslant n$, denotes the identity matrix of size $\ell \times \ell$. Hence A is invertible with inverse B in $M_{n \times n}(K)$.
(c) Let $A, B \in M_{n \times n}(K)$ be upper triangular matrices and denote their product C. Let $1 \leqslant i, j \leqslant n$, we have

$$
c_{i j}=\sum_{\ell=1}^{n} a_{i \ell} b_{\ell j} .
$$

Since $a_{i \ell}=0$ for $\ell<i$ and $b_{\ell j}=0$ for $\ell>j$, we have

$$
c_{i j}=\sum_{\substack{1 \leqslant \ell \leqslant n \\ i \leqslant \ell \leqslant j}} a_{i \ell} b_{\ell j}, \quad \text { if } i \leqslant j
$$

and $c_{i j}=0$ otherwise. Hence C is upper triangular.
4. Let V and W be finite-dimensinal vector spaces over a field K.
(a) Suppose that $2 \leqslant \operatorname{dim} V \leqslant \operatorname{dim} W$. Show that

$$
\mathcal{S}:=\{T \in \operatorname{Hom}(V, W) \mid T \text { is not injective }\}
$$

is not a subspace of $\operatorname{Hom}(V, W)$.
(b) Suppose that $\operatorname{dim} V \geqslant \operatorname{dim} W \geqslant 2$. Show that

$$
\mathcal{T}:=\{T \in \operatorname{Hom}(V, W) \mid T \text { is not surjective }\}
$$

is not a subspace of $\operatorname{Hom}(V, W)$.

Solution:

(a) We will show that there exist two elements T and T^{\prime} of \mathcal{S} such that $T+T^{\prime} \notin \mathcal{S}$. Let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \subset V$ be a basis of V and let $\left\{w_{1}, w_{2}, \ldots, w_{s}\right\} \subset W$ be a basis of W. By assumption, we have $2 \leqslant r \leqslant s$. We consider an element T of \mathcal{S} defined as follows: we set $T\left(v_{1}\right)=w_{1}$ and $T\left(v_{i}\right)=0$ for $2 \leqslant i \leqslant r$ and extend it linearly to obtain a linear map on the whole of V. Then $\operatorname{dim}(\operatorname{Kern}(T))=r-1$ and $\operatorname{rank}(T)=1$. So, T isn't injective and T isn't the 0 map, i.e. $T \in \mathcal{S} \backslash\{0\}$. We now define T^{\prime}. We want to build it so that

$$
\forall v \in V: 0=\left(T+T^{\prime}\right)(v)=T(v)+T^{\prime}(v) \Leftrightarrow v=0 .
$$

We set $T^{\prime}\left(v_{1}\right)=0, T^{\prime}\left(v_{i}\right)=w_{i}$ for all $2 \leqslant i \leqslant r$ and extend it linearly to obtain an element of $\operatorname{Hom}(V, W)$. Assume now that $v=\sum_{i=1}^{r} a_{i} v_{i} \in \operatorname{Kern}\left(T+T^{\prime}\right)$. Then

$$
0=\left(T+T^{\prime}\right)\left(\sum_{i=1}^{r} a_{i} v_{i}\right)=\sum_{i=1}^{r} a_{i}\left(T\left(v_{i}\right)+T^{\prime}\left(v_{i}\right)\right)=\sum_{i=1}^{r} a_{i} w_{i} .
$$

Since $\left\{w_{1}, w_{2}, \ldots w_{r}\right\}$ is a linearly independent subset of W, this implies $\forall 1 \leqslant$ $i \leqslant r: a_{i}=0$ and therefore, $v=0$. This shows that $T+T^{\prime} \notin \mathcal{S}$.
(b) Let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be a basis of V and let $\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ be a basis of W. This time, we have $2 \leqslant s \leqslant r$. We define $T \in \mathcal{T}$ exactly as above. It is not surjective since $\operatorname{Bild}(T) \subseteq \operatorname{Sp}\left(w_{1}\right) \nRightarrow w_{2}$. We define T^{\prime} on the basis as follows: we let $T^{\prime}\left(v_{1}\right)=0$; for $2 \leqslant i \leqslant s$, we let $T^{\prime}\left(v_{i}\right)=w_{s}$; for $s<i \leqslant r$ we let $T^{\prime}\left(v_{i}\right)=w_{s}$. We extend T^{\prime} linearly to an element of $\operatorname{Hom}(V, W)$. Since $\operatorname{Bild}\left(T^{\prime}\right) \subseteq \operatorname{Sp}\left(w_{2}, \cdots, w_{s}\right) \nexists w_{1}, T^{\prime} \in \mathcal{T}$.
We check that $T+T^{\prime}$ is surjective. Let $w=\sum_{i=1}^{s} a_{i} w_{i} \in W$. Then

$$
\begin{aligned}
w=a_{1} T\left(v_{1}\right)+\sum_{i=2}^{s} a_{i} T^{\prime}\left(v_{i}\right) & =\sum_{i=1}^{s} a_{i}\left(T\left(v_{i}\right)+T^{\prime}\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{s}\left(T+T^{\prime}\right)\left(a_{i} v_{i}\right) \in \operatorname{Bild}\left(T+T^{\prime}\right) .
\end{aligned}
$$

Hence $T+T^{\prime} \notin \mathcal{T}$.
5. Consider the linear maps $\mathbb{R}^{4} \xrightarrow{f} \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{3}$ given by

$$
f:\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \mapsto\binom{x_{1}+2 x_{2}+x_{3}}{x_{1}-x_{4}} \quad \text { and } \quad g:\binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{1}-x_{2} \\
3 x_{1}
\end{array}\right)
$$

Let

$$
\mathcal{A}:=\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
4 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right)\right)
$$

and let \mathcal{B} be the standard basis of \mathbb{R}^{2} and let

$$
\mathcal{C}:=\left(\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right) .
$$

(a) Show that \mathcal{A} is a basis of \mathbb{R}^{4} and that \mathcal{C} is a basis of \mathbb{R}^{3}.
(b) Determine $g \circ f$ and the matrices
(i) of f with respect to the bases \mathcal{A}, \mathcal{B}.
(ii) of g with respect to the bases \mathcal{B}, \mathcal{C}.
(iii) of $g \circ f$ with respect to the bases \mathcal{A}, \mathcal{C}.

Lösung:

(a) Gaussion elimination yields that the matrices

$$
A:=\left(\begin{array}{llll}
1 & 1 & 1 & 2 \\
0 & 4 & 1 & 0 \\
1 & 2 & 1 & 3 \\
0 & 2 & 1 & 0
\end{array}\right) \quad \text { and } \quad C:=\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & 1 \\
4 & 1 & 2
\end{array}\right)
$$

are invertible. This proves that \mathcal{A} is a basis of \mathbb{R}^{4} and \mathcal{C} is a basis of \mathbb{R}^{3}.
(b) The maps f and g can be represented by left multiplication with matrices, i.e. $f=T_{U}$ and $g=T_{V}$ for

$$
U:=\left(\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
1 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad V:=\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
3 & 0
\end{array}\right) .
$$

Thus we have $g \circ f=T_{V} \circ T_{U}=T_{V U}$ for the matrix

$$
V U=\left(\begin{array}{cccc}
2 & 2 & 1 & -1 \\
0 & 2 & 1 & 1 \\
3 & 6 & 3 & 0
\end{array}\right)
$$

The matrices $U, V, V U$ represent $f, g, g \circ f$ with respect to the standard bases \mathcal{B}_{n} of \mathbb{R}^{n}, which means that

$$
U=[f]_{\mathcal{B}_{4}}^{\mathcal{B}_{2}}, \quad V=[g]_{\mathcal{B}_{2}}^{\mathcal{B}_{3}} \quad \text { and } \quad V U=[g \circ f]_{\mathcal{B}_{4}}^{\mathcal{B}_{3}} .
$$

The matrix A is the base change matrix $A=\mathcal{B}_{4}\left[\mathrm{id}_{\mathbb{R}^{4}}\right]_{\mathcal{A}}$ and C is the base change matrix $C=\mathcal{B}_{3}\left[\mathrm{id}_{\mathbb{R}^{3}}\right]_{\mathcal{C}}$.
(i) The matrix representing f w.r.t. \mathcal{A} and \mathcal{B} is

$$
\begin{aligned}
{[f]_{\mathcal{A}}^{\mathcal{B}} } & =[f]_{\mathcal{B}_{4}}^{\mathcal{B}} \cdot\left[\operatorname{id}_{\mathbb{R}^{4}}\right]_{\mathcal{A}}^{\mathcal{B}_{4}} \\
& =U \cdot A \\
& =\left(\begin{array}{rrrr}
2 & 11 & 4 & 5 \\
1 & -1 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

(ii) We have

$$
\begin{aligned}
{[g]_{\mathcal{B}}^{\mathcal{C}} } & =\left[\operatorname{id}_{\mathbb{R}^{3}}\right]_{\mathcal{B}_{3}}^{\mathcal{C}} \cdot[g]_{\mathcal{B}}^{\mathcal{B}_{3}} \\
& =\left(\left[\mathrm{id}_{\mathbb{R}^{3}}^{-1}\right]_{\mathcal{C}}^{\mathcal{B}_{3}}\right)^{-1} \cdot[g]_{\mathcal{B}}^{\mathcal{B}_{3}} \\
& =\left(\begin{array}{rr}
-1 & -1 \\
-1 & 0 \\
4 & 2
\end{array}\right) .
\end{aligned}
$$

(iii) The matrix representing $g \circ f$ w.r.t \mathcal{A} and \mathcal{C} is

$$
\begin{aligned}
{[g \circ f]_{\mathcal{A}}^{\mathcal{C}} } & =[g]_{\mathcal{B}}^{\mathcal{C}} \cdot[f]_{\mathcal{A}}^{\mathcal{B}} \\
& =\left(\begin{array}{rrrr}
-3 & -10 & -4 & -7 \\
-2 & -11 & -4 & -5 \\
10 & 42 & 16 & 24
\end{array}\right) .
\end{aligned}
$$

6. Let V be a vector space over a field K. Suppose that T_{1} and T_{2} are two linear maps from V to K that have the same kernel. Show that there exists a constant $c \in K$ such that $T_{1}=c T_{2}$.
Hint: Use Serie 9 exercise 1.
Solution: If T_{1} or T_{2} is the 0 -map, we are done. Assume that T_{2} isn't the 0 -map, i.e. that $\operatorname{ker}\left(T_{2}\right) \subsetneq V$. Let $u \in V \backslash \operatorname{ker}\left(T_{2}\right)$. Then, $v_{0}:=\frac{u}{T_{2}(u)}$ is such that $T_{2}\left(v_{0}\right)=1 \in K$.
Let $v \in V$ and consider

$$
w=v-T_{2}(v) v_{0} \in V
$$

It is an element of $\operatorname{ker}\left(T_{2}\right)$ since

$$
T_{2}(w)=T_{2}(v)-T_{2}(v) T_{2}\left(v_{0}\right)=T_{2}(v)-T_{2}(v)=0
$$

We assumed that $\operatorname{ker}\left(T_{1}\right)=\operatorname{ker}\left(T_{2}\right)$, therefore

$$
0=T_{1}(v)=T_{1}(v)-T_{2}(v) T_{1}\left(v_{0}\right) \Leftrightarrow T_{1}(v)=T_{1}\left(v_{0}\right) T_{2}(v)
$$

Since $v \in V$ was arbitrary, we set $c:=T_{1}\left(v_{0}\right)$ and conclude that

$$
T_{1}=c T_{2} .
$$

