
D-MATH Lineare Algebra I HS 2022
Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 10

1. Consider the real vector space M2ˆ2pRq.

(a) Compute the square of

A “

ˆ

a b
c d

˙

.

(b) Find a formula for the entries of the n-th power of T “

ˆ

1 1
0 1

˙

for all n P N.

Solution:

(a) We have

A2
“

ˆ

a b
c d

˙

¨

ˆ

a b
c d

˙

“

ˆ

a2 ` bc bpa ` dq

cpa ` dq d2 ` bc

˙

.

(b) We show by induction that for all n ě 1
ˆ

1 1
0 1

˙n

“

ˆ

1 n
0 1

˙

.

For n “ 1, we do not have anything to prove. Mow let n ě 1 and assume
that we have proved it for all k ď n. We have

ˆ

1 1
0 1

˙n`1

“

ˆ

1 1
0 1

˙n

¨

ˆ

1 1
0 1

˙

“

ˆ

1 n
0 1

˙

¨

ˆ

1 1
0 1

˙

“

ˆ

1 n ` 1
0 1

˙

,

where we used the induction hypothesis to obtain the second-to-last equality.

2. Let RrXsn be the vectorspace of all polynomials of degree ď n with real coefficients.

(a) Show that
F : Rrxsn Ñ Rrxsn, p ÞÑ p2

` p1

is a linear map, where p1 denotes the derivative of p.

(b) Determine the matrix of F with respect to the basis p1, x, . . . , xnq of RrXsn.

Solution:

(a) For any p, q P RrXsn, for any λ P R, we have

F pp ` λqq “ pp ` λqq
2

` pp ` λqq
1

“ p2
` λq2

` p1
` λq1.

Rearranging, we obtain F pp ` λqq “ F ppq ` λF pqq. We conclude that F is
linear.
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(b) We compute

F pxi
q “

$

&

%

0, if i “ 0
1, if i “ 1

ipi ´ 1qxi´2 ` ixi´1, if i ě 2

Denoting B “ t1, x, x2, ¨ ¨ ¨ , xnu the standard basis of Rrxsn, we write it as

BrF sB “ ppj ´ 1qpj ´ 2qδi,j´2 ` pj ´ 1qδi,j´1q1ďi,jďn`1.

In the above notation everything is offset by -1 since the power of the poly-
nomials in the basis start with 0 but the indexing of the matrix starts with
1. More explicitly, it will look as follows:

BrF sB “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 2 0 ¨ ¨ ¨ 0
0 0 2 6 ¨ ¨ ¨ 0
0 0 0 3 ¨ ¨ ¨ 0
...

...
...

...
...

...
0 0 0 0 ¨ ¨ ¨ npn ´ 1q

0 0 0 0 ¨ ¨ ¨ n
0 0 0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

3. Let K be a field.

(a) Consider the matrices

A “

ˆ

A1 0kˆpn´kq

0pn´kqˆk A2

˙

P MnˆnpKq

with A1 P MkˆkpKq and A2 P Mpn´kqˆpn´kqpKq for some k ě 1, and

B “

ˆ

B1 0kˆpn´kq

0pn´kqˆk B2

˙

P MnˆnpKq

with B1 P MkˆkpKq and B2 P Mpn´kqˆpn´kqpKq. Show that

A ¨ B “

ˆ

A1 ¨ B1 0kˆpn´kq

0pn´kqˆk A2 ¨ B2

˙

(b) Let A be defined as above and assume that A1, respectively A2, is invertible
as an element of MkˆkpKq, respectively Mpn´kqˆpn´kqpKq. Show that A is
invertible.

(c) Consider the space U of upper triangular matrices in MnˆnpKq. Show that
the product of 2 elements of U is in U .

Solution:
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(a) Let us denote C :“ A ¨ B. We will write A “ paijq, B “ pbijq and C “ pcijq.
We recall the product formula:

@ 1 ď i, j ď n : cij “

n
ÿ

ℓ“1

aiℓbℓj.

Let us divide the matrices into the quadrants

1 ď i, j ď k, 1 ď i ď k ^ k ă j ď n,
k ă i ď n ^ 1 ď j ď k, k ă i, j ď n.

We treat the cases separately.

If 1 ď i, j ď k, we have

cij “

k
ÿ

ℓ“1

aiℓbℓj `

n
ÿ

ℓ“k`1

0 ¨ 0 “

k
ÿ

ℓ“1

aiℓbℓj.

The last sum is the formula to compute an entry of the product A1 ¨B1 since
i, j are arbitrary in t1, . . . , ku.

We proceed similarly for the 3 other quadrants and obtain the formula.

(b) Denote A´1
i the inverse of Ai, i “ 1, 2 and define

B :“

ˆ

A´1
1 0kˆpn´kq

0pn´kqˆk A´1
2

˙

.

By a),

A ¨ B “

ˆ

A1 ¨ A´1
1 0kˆpn´kq

0pn´kqˆk A2 ¨ A´1
2

˙

“

ˆ

Ik 0kˆpn´kq

0pn´kqˆk In´k

˙

“ In,

where Iℓ, 1 ď ℓ ď n, denotes the identity matrix of size ℓ ˆ ℓ. Hence A is
invertible with inverse B in MnˆnpKq.

(c) Let A,B P MnˆnpKq be upper triangular matrices and denote their product
C. Let 1 ď i, j ď n, we have

cij “

n
ÿ

ℓ“1

aiℓbℓj.

Since aiℓ “ 0 for ℓ ă i and bℓj “ 0 for ℓ ą j, we have

cij “
ÿ

1ďℓďn
iďℓďj

aiℓbℓj, if i ď j

and cij “ 0 otherwise. Hence C is upper triangular.
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4. Let V and W be finite-dimensinal vector spaces over a field K.

(a) Suppose that 2 ď dimV ď dimW . Show that

S :“ tT P HompV,W q | T is not injectiveu

is not a subspace of HompV,W q.

(b) Suppose that dimV ě dimW ě 2. Show that

T :“ tT P HompV,W q | T is not surjectiveu

is not a subspace of HompV,W q.

Solution:

(a) We will show that there exist two elements T and T 1 of S such that T`T 1 R S.
Let tv1, v2, . . . , vru Ă V be a basis of V and let tw1, w2, . . . , wsu Ă W be a
basis ofW . By assumption, we have 2 ď r ď s. We consider an element T of S
defined as follows: we set T pv1q “ w1 and T pviq “ 0 for 2 ď i ď r and extend it
linearly to obtain a linear map on the whole of V . Then dimpKernpT qq “ r´1
and rankpT q “ 1. So, T isn’t injective and T isn’t the 0 map, i.e. T P S∖t0u.

We now define T 1. We want to build it so that

@v P V : 0 “ pT ` T 1
qpvq “ T pvq ` T 1

pvq ô v “ 0.

We set T 1pv1q “ 0, T 1pviq “ wi for all 2 ď i ď r and extend it linearly to obtain
an element of HompV,W q. Assume now that v “

řr
i“1 aivi P KernpT ` T 1q.

Then

0 “ pT ` T 1
q

˜

r
ÿ

i“1

aivi

¸

“

r
ÿ

i“1

aipT pviq ` T 1
pviqq “

r
ÿ

i“1

aiwi.

Since tw1, w2, . . . wru is a linearly independent subset of W , this implies @1 ď

i ď r : ai “ 0 and therefore, v “ 0. This shows that T ` T 1 R S.
(b) Let tv1, v2, . . . , vru be a basis of V and let tw1, w2, . . . , wsu be a basis of W .

This time, we have 2 ď s ď r. We define T P T exactly as above. It is not
surjective since BildpT q Ď Sppw1q S w2. We define T 1 on the basis as follows:
we let T 1pv1q “ 0; for 2 ď i ď s, we let T 1pviq “ ws; for s ă i ď r we
let T 1pviq “ ws. We extend T 1 linearly to an element of HompV,W q. Since
BildpT 1q Ď Sppw2, ¨ ¨ ¨ , wsq S w1, T

1 P T .

We check that T ` T 1 is surjective. Let w “
řs

i“1 aiwi P W. Then

w “ a1T pv1q `

s
ÿ

i“2

aiT
1
pviq “

s
ÿ

i“1

aipT pviq ` T 1
pviqq

“

s
ÿ

i“1

pT ` T 1
qpaiviq P BildpT ` T 1

q.

Hence T ` T 1 R T .
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5. Consider the linear maps R4 f
Ñ R2 g

Ñ R3 given by

f :

¨

˚

˚

˝

x1

x2

x3

x4

˛

‹

‹

‚

ÞÑ

ˆ

x1 ` 2x2 ` x3

x1 ´ x4

˙

and g :

ˆ

x1

x2

˙

ÞÑ

¨

˝

x1 ` x2

x1 ´ x2

3x1

˛

‚.

Let

A :“

¨

˚

˚

˝

¨

˚

˚

˝

1
0
1
0

˛

‹

‹

‚

,

¨

˚

˚

˝

1
4
2
2

˛

‹

‹

‚

,

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

,

¨

˚

˚

˝

2
0
3
0

˛

‹

‹

‚

˛

‹

‹

‚

,

and let B be the standard basis of R2 and let

C :“

¨

˝

¨

˝

1
3
4

˛

‚,

¨

˝

2
0
1

˛

‚,

¨

˝

1
1
2

˛

‚

˛

‚.

(a) Show that A is a basis of R4 and that C is a basis of R3.

(b) Determine g ˝ f and the matrices

(i) of f with respect to the bases A,B.
(ii) of g with respect to the bases B, C.
(iii) of g ˝ f with respect to the bases A, C.

Lösung :

(a) Gaussion elimination yields that the matrices

A :“

¨

˚

˚

˝

1 1 1 2
0 4 1 0
1 2 1 3
0 2 1 0

˛

‹

‹

‚

and C :“

¨

˝

1 2 1
3 0 1
4 1 2

˛

‚

are invertible. This proves that A is a basis of R4 and C is a basis of R3.

(b) The maps f and g can be represented by left multiplication with matrices,
i.e. f “ TU and g “ TV for

U :“

ˆ

1 2 1 0
1 0 0 ´1

˙

and V :“

¨

˝

1 1
1 ´1
3 0

˛

‚.

Thus we have g ˝ f “ TV ˝ TU “ TV U for the matrix

V U “

¨

˝

2 2 1 ´1
0 2 1 1
3 6 3 0

˛

‚.
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The matrices U, V, V U represent f, g, g ˝f with respect to the standard bases
Bn of Rn, which means that

U “ rf s
B2
B4
, V “ rgs

B3
B2

and V U “ rg ˝ f s
B3
B4
.

The matrix A is the base change matrix A “ B4ridR4sA and C is the base
change matrix C “ B3 ridR3sC.

(i) The matrix representing f w.r.t. A and B is

rf s
B
A “ rf s

B
B4

¨ ridR4s
B4

A

“ U ¨ A

“

ˆ

2 11 4 5
1 ´1 0 2

˙

.

(ii) We have

rgs
C
B “ ridR3s

C
B3

¨ rgs
B3
B

“
`

rid´1
R3 s

B3
C

˘´1
¨ rgs

B3
B

“

¨

˝

´1 ´1
´1 0
4 2

˛

‚.

(iii) The matrix representing g ˝ f w.r.t A and C is

rg ˝ f s
C
A “ rgs

C
B ¨ rf s

B
A

“

¨

˝

´3 ´10 ´4 ´7
´2 ´11 ´4 ´5
10 42 16 24

˛

‚.

6. Let V be a vector space over a field K. Suppose that T1 and T2 are two linear
maps from V to K that have the same kernel. Show that there exists a constant
c P K such that T1 “ cT2.

Hint : Use Serie 9 exercise 1.

Solution: If T1 or T2 is the 0-map, we are done. Assume that T2 isn’t the 0-map, i.e.
that kerpT2q Ĺ V. Let u P V∖kerpT2q. Then, v0 :“

u
T2puq

is such that T2pv0q “ 1 P K.
Let v P V and consider

w “ v ´ T2pvqv0 P V.

It is an element of kerpT2q since

T2pwq “ T2pvq ´ T2pvqT2pv0q “ T2pvq ´ T2pvq “ 0.

We assumed that kerpT1q “ kerpT2q, therefore

0 “ T1pvq “ T1pvq ´ T2pvqT1pv0q ô T1pvq “ T1pv0qT2pvq.

Since v P V was arbitrary, we set c :“ T1pv0q and conclude that

T1 “ cT2.
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