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1. Suppose that V,W are finite-dimensional vector spaces over a field K. Let T P

HompV,W q. Prove that rankpT q “ 1 if and only if there exists a basis B of V and
a basis C of W such that with respect to these bases, all entries of rT sBC equal 1.

Solution: We write m the dimension of V and n the dimension of W and denote
B0, respectively C0, an arbitrary basis of V . respectively W . Since T is a homo-
morphism of rank 1, the matrix rT s

B0
C0 is of rank 1. It is therefore equivalent to

any matrix of rank 1 in MnˆmpKq, namely there exist matrices P P GLnpKq and
Q P GLmpKq such that P rT s

B0
C0Q “ A, where A P MnˆnpKq is the matrix whose

entries are all equal to 1. Since Q P GLmpKq, it can be seen as the base change
matrix from B to B0, where B is defined such that the diagram

V V

Km Km

IdV

ΦB ΦB0

P

commutes. Similarly, C defines a base-change matrix from C0 to some basis C.
Hence,

A “ P rT s
B0
C0Q “ rIdW s

C′
C rT s

B0
C0 rIdV s

B
B0

“ rT s
B
C .

2. Suppose V is finite-dimensional and S, T, U P HompV, V q with STU “ IdV . Show
that T is invertible and that T´1 “ US.

Solution: Observe that STU “ IdV implies that STU is an automorphism of V .
Since t0u “ KerpIdV q “ KerpSTUq Ě KerpUq, we must have that U is injective.
Since V is finite-dimensional, this implies that U is bijective and hence invertible.
So,

ST “ U´1.

Also since V “ ImpSTUq Ď ImpSq, we deduce that S is surjective. Since S : V Ñ

V and V is finite-dimensional, this implies that S is injective. Hence S is invertible
and

T “ S´1U´1.

This shows both that T is invertible and that

T´1
“ US.

3. Let V be a finite-dimensional vector spaces over a field K. Suppose that T P

HompV, V q, and that A “ tu1, . . . , unu and B “ tv1, . . . , vnu are bases of V . Prove
that the following are equivalent:
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(a) T is invertible.

(b) The columns of rT sAB are linearly independent in Kn
col;

(c) The columns of rT sAB span Kn
col;

(d) The rows of rT sAB are linearly independent in Kn
row;

(e) The rows of rT sAB span Kn
row.

Solution: See the proof of proposition 3.6.8 (p.128) in Menny Aka’s lecture notes,
available on the course website.

4. Let V be a finite-dimensional vector space. Prove or disprove:

(a) Let V 1 Ă V be a linear subspace. Every automorphism f : V 1 Ñ V 1 can be
extended to an automorphism f̄ : V Ñ V .

(b) For every Endomorphism f : V Ñ V its image Impfq is a linear complement
Kerpfq in V .

(c) There does not exist any linear map T : R5 Ñ R5 such that

rankpT q “ dimKerpT q.

Lösung :

(a) This assertion is true. Choose a complement of V 1, i.e., a subvectorspace V 2

of V with V “ V 1 ` V 2 and V 1 X V 2 “ t0u. Then the map

V 1
ˆ V 2

Ñ V, pv1, v2
q ÞÑ v1

` v2

is bijective. Define a map f̄ : V Ñ V by f̄ pv1 ` v2q :“ f pv1q ` v2 for all
v1 P V 1 and v2 P V 2. As f is linear, a direct computation shows that f̄ is
linear as well. We claim that f̄ is bijective. To see this, consider first v1 P V 1

and v2 P V 2 with f pv1q ` v2 “ 0. Then we have f pv1q “ ´v2 P V 1 XV 2 “ t0u

and so f pv1q “ v2 “ 0. As f is injective, we also get v1 “ 0. Thus, we have
Kerpf̄q “ t0u and hence f̄ is injektive.

Now let v P V be an arbitrary element. Write v “ v1 ` v2 with v1 P V 1 and
v2 P V 2. Then, we have v1 “ f pf´1 pv1qq and thus v “ f pf´1 pv1qq ` v2 “

f̄ pf´1 pv1q ` v2q. Therefore, the map f̄ is surjektive. Together we get that f̄
is bijektive and thus an isomorphism V Ñ V , and hence an Automorphismus
of V .

(b) The assertion is false. Consider for example the endomorphism LA : R2 Ñ R2

defined by left multiplication with

A :“

ˆ

0 1
0 0

˙

.

Then, we have Ker pLAq “
@

p1, 0qT
D

“ Bild pLAq. The subspaces neither
have intersection t0u, nor do they generate R2, and thus they cannot form
V “ Kerpfq ‘ Bildpfq.
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(c) Consider an endomorphism T : R5 Ñ R5. By the rank theorem,

rankpT q ` dimpKerpT qq “ dimpR5
q “ 5.

If we were to have rankpT q “ dimpKerpT qq, we would have

5 “ 2 rankpT q P 2Z,

which cannot hold since 5 is not even.

5. Consider the space M2ˆ2pKq of 2-by-2 matrices over a field K.

(a) Show that if A P M2ˆ2pKq satisfies A2 ‰ 0, then Ak ‰ 0 for all k ě 3.

(b) Find a field K and a matrix A P M2ˆ2pKq ∖ t0u such that Dn P N : An “ 0.

Solution:

(a) Let A P M2ˆ2pKq and denote T “ TA be the linear map associated to A. If
T pK2q “ K2, then T is an isomorphism and T k ‰ 0 for all k ě 1. Assume
now that T pK2q “ L is a one-dimensional subspace of K2. Then T 2pK2q “

T pLq Ď L. However, since T 2 ‰ 0, T 2pK2q “ T pLq “ L.

Let n ě 2. We now assume that TmpK2q “ L for 2 ď m ď n and we show
that T n`1pK2q “ L. Indeed,

T n`1
pK2

q “ T pT n
pK2

qq “ T pLq “ L.

This shows that T k ‰ 0 for all k ě 1.

(b) Take for example
ˆ

0 1
0 0

˙

P M2ˆ2pCq.

6. Determine the ranks of the following rational nˆn-matrixes, those being elements
of MnˆnpQq, depending on the positive integer n.

(a) pklqk,l“1,...,n;

(b)
`

p´1qk`lpk ` l ´ 1q
˘

k,l“1,...,n
;

(c)

ˆ

pk ` lq!

k!l!

˙

k,l“0,...,n´1

.

Hint: Note that the last matrix is indexed from 0 to n´ 1. You may use induction
to find the desired formula.

Solution:
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(a) Define B :“ pbklqk,l“1,...,n :“ pklqk,l“1,...,n. Let B
1 “ pb1

klqk,l“1,...,n be the matrix
arising from B by substracting for every k “ 2, . . . , n the k-multiple of the
first row from the k-st row. Then, we have

b1
kl “

#

bkl “ l falls k “ 1

bkl ´ kb1l “ kl ´ kl “ 0 falls k ą 1.

Thus, the matrix B1 has exactly one non-vanishing row and thus has rank 1.
As B1 arose through elementary row operations from B, and hence by left
multiplication with an invertible matrix, the rank of B1 is the same as the
rank of B. Therefore, we get RangpBq “ 1.

Aliter : Let u :“ p1, . . . , nq the 1ˆn matrix with entry i on the position p1, iq.
Then, we have B “ uT ¨ u. As the rank of puq is ď 1, exercise 3 (c) yields
RangpBq ď 1. From B ‰ 0, we also get RangpBq ě 1 and thus RangpBq “ 1.

(b) Let B :“ pbklqk,l“1,...,n with bkl :“ p´1qk`lpk`l´1q. For n “ 1, the matrixB “

p1q ‰ 0 has rank 1. It remains to treat the case n ě 2. For all k “ 1, . . . , n´2
and l “ 1, . . . , n, we get

bkl ` 2bk`1,l ` bk`2,l “ 0,

and thus the k-th row of B is a linear combination of the pk ` 1q-th and
pk`2q-th row. Therefore, the matrix B can by elementary row operations be
transformed into a matrix, in which only the last two rows are non-vanishing
and these are identical to the last tow rows of B. These two are linearly
independent, which we get from a direct computation. Together, we have

rankpBq “

#

1, falls n “ 1

2, falls n ě 2

(c) Let Cn :“ pcklqk,l“0,...,n´1 be the matrix with ckl :“
pk`ℓq!
k!ℓ!

“

ˆ

k ` l
l

˙

.

Claim: rank pCnq “ n.

Proof : We induct over n. For n “ 1, the assertion is true, as C1 “ p1q ‰ 0.
Assume, that we know the claim for n ě 1. Let C 1 “ pc1

klqk,l“0,...,n be the
matrix, which arises from Cn`1, when beginning with the last row, from each
row the previous row is substracted. In other words:

c1
kl :“

#

ckl ´ ck´1,l if k “ 1, . . . , n

c0l if k “ 0.

Let moreover C2 “ pc2
klqk,l“0,...,n be the matrix, which arises from C 1, when

beginning with the last column, from each column the previous column is
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substracted. In other words:

c2
kl :“

#

c1
kl ´ c1

k,l´1 l “ 1, . . . , n

c1
k0 l “ 0.

For every 1 ď k, l ď n, we have

c2
kl “ c1

kl ´ c1
k,l´1

“ pckl ´ ck´1,lq ´ pck,l´1 ´ ck´1,l´1q

“
pk ` ℓq!

k!ℓ!
´

pk ` ℓ ´ 1q!

pk ´ 1q!ℓ!
´

pk ` ℓ ´ 1q!

k!pℓ ´ 1q!
`

pk ` ℓ ´ 2q!

pk ´ 1q!pℓ ´ 1q!

“
pk ` ℓq!

k!ℓ!

ˆ

1 ´
k

k ` 1
´

l

k ` l

˙

`
pk ` ℓ ´ 2q!

pk ´ 1q!pℓ ´ 1q!

“
pk ` ℓ ´ 2q!

pk ´ 1q!pℓ ´ 1q!
.

Therefore, we get

C2
“

¨

˚

˚

˚

˝

1 0 . . . 0
0
... Cn

0

˛

‹

‹

‹

‚

and finally

Rang Cn`1 “ Rang pC2
q “ 1 ` Rang Cn “ n ` 1.
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