
D-MATH Lineare Algebra I HS 2022
Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 12

1. For each of the following matrices, determine whether or not it is invertible, and
if it is compute its inverse.

(a)

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚

(b)

¨

˝

1 0 0
1 1 0
1 1 1

˛

‚

(c)

¨

˚

˚

˝

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

˛

‹

‹

‚

(d)

¨

˚

˚

˝

1 2 ´3 1
´1 3 ´3 ´2
2 0 1 5
3 1 ´2 6

˛

‹

‹

‚

Lösung :

(a) This matrix is of rank 1 since the first row is equal to the second and to the
third. Therefore it cannot be transformed into the identity using elementary
row-operations and it isn’t invertible.

(b)

¨

˝

1 0 0
´1 1 0
0 ´1 1

˛

‚

(c)

¨

˚

˚

˝

4{5 ´1{5 ´1{5 ´1{5
´1{5 4{5 ´1{5 ´1{5
´1{5 ´1{5 4{5 ´1{5
´1{5 ´1{5 ´1{5 4{5

˛

‹

‹

‚

(d)

¨

˚

˚

˝

35{11 ´16{11 13{11 ´2
1 0 1 ´1

10{11 ´3{11 10{11 ´1
´16{11 7{11 ´5{11 1

˛

‹

‹

‚

.
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2. Show that a square matrix A is invertible if and only if its transpose AT is inver-
tible. Moreover, show that in that case we have pAT q´1 “ pA´1qT .

Lösung : We already know for all quadratic matrices A and B of the same size, the
equation pA ¨ BqT “ BT ¨ AT is satisfied.

First, assume that A is invertible with inverse A´1. Then:

AT
¨ pA´1

q
T

“ pA´1
¨ Aq

T
“ IT “ I,

pA´1
q
T

¨ AT
“ pA ¨ A´1

q
T

“ IT “ I.

Therefore, the matrix AT is invertible with inverse pA´1qT and we have pAT q´1 “

pA´1qT .

Second, assume AT is invertible. We proved in the lecture pAT qT “ A. Going
through the first case with AT instead of A yields that pAT qT “ A is invertible.

3. (a) Let V,W be two n-dimensional vector spaces over a fieldK. Let S P HompV,W q

and T P HompW,V q such that T ˝ S “ IdV . Show that S is invertible and T
is the inverse of S.

(b) Let A,B P MnˆnpKq such that A ¨ B “ In. Show that A is invertible with
inverse B.

Lösung :

(a) Since S admits a left-sided inverse, it is injective. SinceW is finite-dimensional,
this implies that S is surjective. Since T admits a right-sided inverse, it is
surjective. So, it is injective as V is finite-dimensional. This shows that both
S and T are isomorphisms, and therefore that they are invertible. Note that
for any w P W , there exists a unique v P V such that Spvq “ w. Hence

S ˝ T pwq “ S ˝ T pSpvqq “ Spvq “ w.

So,
T ˝ S “ IdV and S ˝ T “ IdW ,

which implies that T is the inverse of S by definition.

(b) A, respectively B, defines a linear map TA : Kn
col Ñ Kn

col, v ÞÑ A ¨ v, respec-
tively TB : Kn

col Ñ Kn
col, v ÞÑ B ¨ v. Since A ¨ B “ In, for any w P Kn

col we
have

TA ˝ TBpwq “ TApB ¨ wq “ A ¨ pB ¨ wq “ pA ¨ Bq ¨ w “ w.

So, TA ˝ TB “ IdKn
col

and by (a), we obtain that TA and TB are invertible and
are the inverse of each other. Equivalently

B ¨ A “ A ¨ B “ In,

so A and B are invertible with B “ A´1.
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4. Consider n ˆ n-matrices A and B over K.

(a) Show: If A or B is invertible, then AB and BA are similar.

(b) Does this also hold true without the condition in (a)?

Lösung : (a) If A is invertible, then AB “ ApBAqA´1 is similar to BA. Likewise,
if B is invertible, then BA “ BpABqB´1 is similar to AB.

(b) For A :“
`

0 1
0 0

˘

and B :“
`

0 0
0 1

˘

we have AB “
`

0 1
0 0

˘

and BA “
`

0 0
0 0

˘

. As the
zeromatrix is only similar to itself, this is a counterexample.

5. Determine with the help of Gaussian elimination, for which values of α the follo-
wing matrix over Q is invertible:

¨

˚

˚

˝

1 3 ´4 2
2 1 ´2 1
3 ´1 ´2 ´2α

´6 2 1 α2

˛

‹

‹

‚

.

Lösung : Gaussian elimination yields the matrix

¨

˚

˚

˝

1 3 ´4 2
0 ´5 6 ´3
0 0 ´2 ´2α
0 0 0 α2 ´ α

˛

‹

‹

‚

,

which is invertible if and only if the original matrix is invertible. As a triangular
matrix is invertible if and only if it has non-zero diagonal entries, it follows that
the original mamtrix is invertible if and only if

α2
´ α “ αpα ´ 1q ‰ 0.

This is equivalent to α R t0, 1u.

6. Prove the following:

Theorem. (Bruhat-Decomposition) For every invertible matrix A there exists a
permutation matrix P , i.e. a matrix which has exactly one non-zero, which equals
1, in every column and every row, and invertible upper triangular matrices B and
B1, such that

A “ BPB1.

Hint: Choose an invertible upper triangular matrix U , such that the sum of the
number of leading zeros in all rows of UA is maximal. Then find a permutation
matrix Q, such that QUA is an invertible upper triangular matrix.
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Multiplying a matrix A on the left by a permutation matrix P permutes the rows
of A. For example, if P has a 1 at index pi, jq, the j–th line of A will become the
i-th line of PA.

Lösung : For every invertible upper triangular matrix U we consider the sum of the
nubmer of leading zeros of all rows of UA. This sum is bounded by the number
of entries of A, and hence we can choose an invertible upper triangular matrix U
which minimises this sum.

Claim. The numbers of leading zeros of the rows of UA are pairwise different.

Proof. Assume that the claim is false for the i-th and j-th row with i ă j. Then
the first non-zero entry of these rows is in the same cloumn. We substract a
suitable multiple of the j-th row from the i-th row. The i-th row of the resulting
matrix has at least one leading zero more. This row operation corresponds to
left multiplicationwith an invertible upper triangular matrix of the Form T “

Im `λEij. As the other rows are unchanged, the sum of the leading zeros of TUA
is greater than the one of UA. As TU also is an invertible upper triangular matrix,
this is a contradiction to the maximised choice of U .

The claim yields that we can transform UA into an upper triangular matrix B1 by
left multiplication with a permutation matrix Q. In other words, we have QUA “

B1.As Q, U and A are invertible, so is B1. The inverse of a permutation matrix
is again a permutation matrix and the inverse of an upper triangular matrix is
again an upper triangular matrix. Hence with P :“ Q´1 and B :“ U´1 we get the
equation A “ BPB1 of the desired form.
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Single Choice. In each exercise, exactly one answer is correct.

1. Which assertion is not always satisfied?

(a) The base change matrix is the representation matrix of the identity map with
respect to the according bases.

(b) Every finite dimensional vector space is isomorpic to Kn for some n ě 0.

(c)✓ The rank of a linear map f : Kn Ñ Km is at least mintn,mu.

(d) The representation matrix of an isomorphism is invertible.

Erklärung : The rank of a linear map f : Kn Ñ Km is at most mintn,mu; but can
for example also be 0, thus (c)is false.

2. Consider C as real two-dimensional vectorspace with the ordered basis B :“ p1, iq.

The matrix r. . . sBB :“

ˆ

0 ´1
1 0

˙

is the representation matrix with respect to B of

the linear map C Ñ C:

(a) Complex conjugation z ÞÑ z̄

(b) z ÞÑ Repzq

(c) z ÞÑ Impzq

(d)✓ z ÞÑ iz

Erklärung : In the Basis B an element a ` ib P C is written as the vecor
`

a
b

˘

.

Under the matrix r. . . sBB, it is mapped to
`

´b
a

˘

, which corresponds to the elemtn
´b ` ia “ ipa ` ibq.
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3. The rank of

ˆ

1 3
´3 ´9

˙

over Q is

(a) 0

(b)✓ 1

(c) 2

(d) 3

Erklärung : The columns of the matrix are non-zero, but linearly dependent. The
second column is ´3 times the second one. Thus, the rank is 1.

4. For every n ˆ m-Matrix A and every invertible n ˆ n-matrix B, we have

(a) rankpBAq “ rankpBq ¨ rankpAq

(b) rankpBAq “ rankpBq ` rankpAq

(c)✓ rankpBAq “ rankpAq

(d) rankpBAq “ rankpBq

Erklärung : According to Lemma 3.4.2 of the lecture, the rank of a linear map does
not change by left composition with an isomorphism. In the language of matrices
this translates to (c).
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Multiple Choice Fragen.

1. Consider the following ordered bases of Rrxs2:

B “ p1, x, x2
q, C “ px2, px ` 1q

2, px ` 2q
2
q

Determine the base change matrix Q :“ rIdRrxs2sBC .

(a) Q “

¨

˝

0 1 4
0 2 4
1 1 1

˛

‚

(b) Q “

¨

˝

1 1 1
0 2 4
0 1 4

˛

‚

(c) Q “

¨

˝

0 0 1
1 2 1
4 4 1

˛

‚

(d) Q “ 1
4

¨

˝

2 ´4 4
´1 4 ´3
4 0 0

˛

‚

(e)✓ Q “ 1
4

¨

˝

2 ´3 4
´4 4 0
2 ´1 0

˛

‚

(f) Q “ 1
4

¨

˝

2 ´1 4
´4 4 0
4 ´3 0

˛

‚

Erklärung : One solves the system of equations

p “ ax2
` bpx ` 1q

2
` cpx ` 2q

2
“ pa ` b ` cqx2

` p2b ` 4cqx ` pb ` 4cq

for p “ 1, x, x2 using comparison of coefficients. For p “ 1, we get

b ` 4c “1

2b ` 4c “0

a ` b ` c “0

The second equation yields c “ ´1
2
b and substitution into the first one b “ ´1.

Hence we get c “ 1
2
. Substitution into the third equation implies and thus

r1sC “

¨

˝

1
2

´1
1
2

˛

‚“
1

4

¨

˝

2
´4
2

˛

‚

This already excludes all but one answers. Of course one could now also compute
rxsC, and rx2sC.
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2. Let A P MnˆnpKq and P P GLnpKq, denote

r :“ rankpA ´ Inq and s :“ rankpPAP´1
´ Inq.

Which of the following statements hold?

(a)✓ r “ s;
Erklärung : Note that

P pA ´ InqP´1
“ PAP´1

´ PInP
´1

“ PAP´1
´ In.

Hence PAP´1´In and A´In are equivalent matrices. As seen in the lectures,
this implies r “ s.

(b) r ‰ s;

(c) r ą s;

(d) r ă s;

(e)✓ if r ă n, Dv P V ∖ t0u such that Av “ v.
Erklärung : As usual, A ´ In defines a linear map

T : Kn
col Ñ Kn

col

v ÞÑ pA ´ Inq ¨ v

So,
n “ dimpKn

colq “ dimpkerpT qq ` rankpT q “ dimpkerpT qq ` r.

If r ă n, dimpkerpT qq ě 1 so there exists some v P kerpT q∖t0u. Equivalently,
there exists some non-zero v P V such that

A ¨ v ´ In ¨ v “ 0 ô A ¨ v “ v.
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