Lösungen zur Übungsserie 12

Aufgabe 1. Berechnen Sie die folgenden Grenzwerte.

(a)
$$\lim_{x \searrow 0} \frac{\sin(x) - x}{x^2 \sin(x)}$$

(b)
$$\lim_{x\to 0} \frac{e^x - x - 1}{\cos x - 1}$$

(c)
$$\lim_{x \to 2} \frac{x^4 - 4^3}{\sin \pi x}$$

$$(d)^* \lim_{x \to \infty} \sqrt[x]{e^x + x}$$

(e)
$$\lim_{x \searrow 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x}}$$

(a)
$$\lim_{x \to 0} \frac{\sin(x) - x}{x^2 \sin(x)}$$
 (b) $\lim_{x \to 0} \frac{e^x - x - 1}{\cos x - 1}$ (c) $\lim_{x \to 2} \frac{x^4 - 4^x}{\sin \pi x}$ (d)* $\lim_{x \to \infty} \sqrt[x]{e^x + x}$ (e) $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$ (f) $\lim_{x \to \infty} \frac{x^{\sqrt{\ln x}} \left(\sqrt{\ln x}\right)^x}{\sqrt{x^{\ln x}} (\ln x)^{\sqrt{x}}}$

Lösung.

(a) Situation $\frac{0}{0}$. Wir berechnen mit l'Hôpital's Regel

$$\lim_{x\searrow 0}\frac{\sin(x)-x}{x^2\sin(x)}=\lim_{x\searrow 0}\frac{\cos(x)-1}{2x\sin(x)+x^2\cos(x)}.$$

Immer noch Situation $\frac{0}{0}$. Wieder mit l'Hôpital's Regel ist das derselbe Grenzwert wie

$$\lim_{x \searrow 0} \frac{-\sin(x)}{2x\cos(x) + 2\sin(x) + 2x\cos(x) - x^2\sin(x)}.$$

Immer noch Situation $\frac{0}{0}$. Wieder mit l'Hôpital's Regel ist das derselbe Grenzwert wie

$$\lim_{x \searrow 0} \frac{-\cos(x)}{2\cos(x) - 2\sin(x) + 2\cos(x) + 2\cos(x) - 2x\sin(x) - 2x\sin(x) - x^2\cos(x)}.$$

Dieser Grenzwert ist gleich $\frac{-1}{2+2+2} = -\frac{1}{6}$

(b) Situation $\frac{0}{0}$. Wir berechnen mit l'Hôpital's Regel

$$\lim_{x \to 0} \frac{e^x - x - 1}{\cos x - 1} = \lim_{x \to 0} \frac{e^x - 1}{-\sin x - 1}.$$

Immer noch Situation $\frac{0}{0}$. Wieder mit l'Hôpital's Regel ist das derselbe Grenzwert wie

$$\lim_{x \to 0} \frac{e^x}{-\cos x}.$$

Dieser Grenzwert ist gleich -1

(c) Situation $\frac{0}{0}$. Beachte, dass $4^x = \exp(x \log(4))$ ist und darum

$$(4^x)' = (\exp(x\log(4)))' = \log(4)\exp(x\log(4)) = \log(4)4^x.$$

Wir berechnen mit l'Hôpital's Regel

$$\lim_{x \to 2} \frac{x^4 - 4^x}{\sin \pi x} = \lim_{x \to 2} \frac{4x^3 - \log(4)4^x}{\pi \cos \pi x} = \frac{16(2 - \log(4))}{\pi}$$

(d) Wir berechnen

$$\ln\left(\lim_{x\to\infty}\sqrt[x]{e^x+x}\right) = \lim_{x\to\infty}\ln\left(\sqrt[x]{e^x+x}\right) = \lim_{x\to\infty}\frac{\ln(e^x+x)}{x}$$

Situation $\frac{\infty}{\infty}$. Wir berechnen mit l'Hôpital's Regel

$$\lim_{x \to \infty} \frac{\ln(e^x + x)}{x} = \lim_{x \to \infty} \frac{e^x + 1}{e^x + x}$$

Situation $\frac{\infty}{\infty}$. Wir berechnen mit l'Hôpital's Regel

$$\lim_{x \to \infty} \frac{e^x + 1}{e^x + x} = \lim_{x \to \infty} \frac{e^x}{e^x + 1} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = 1$$

Somit ist

$$\lim_{x\to\infty}\sqrt[x]{e^x+x}=\lim_{x\to\infty}e^{\ln\left(\sqrt[x]{e^x+x}\right)}=e^{\lim_{x\to\infty}\ln\left(\sqrt[x]{e^x+x}\right)}=e$$

(e) Wir schreiben zuerst um

$$\lim_{x \searrow 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = \lim_{x \searrow 0} \exp \left(\frac{1}{x^2} \log \left(\frac{\sin x}{x} \right) \right) = \exp \left(\lim_{x \searrow 0} \frac{1}{x^2} \log \left(\frac{\sin x}{x} \right) \right),$$

weil exp stetig ist. Wir haben die Situation $\frac{0}{0}$. Wir berechnen mit l'Hôpital's Regel

$$\lim_{x\searrow 0}\frac{1}{x^2}\log\left(\frac{\sin x}{x}\right)=\lim_{x\searrow 0}\frac{1}{2x}\frac{1}{\frac{\sin x}{x}}\frac{x\cos x-\sin x}{x^2}=\lim_{x\searrow 0}\frac{x\cos x-\sin x}{2\sin(x)x^2}.$$

Dieser Grenzwert ist wie in Teilaufgabe (a) zu lösen und ergibt $-\frac{1}{6}$, also ist der ursprüngliche Grenzwert

$$\lim_{x \searrow 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = \exp\left(-\frac{1}{6} \right).$$

Aufgabe 2. Berechnen Sie die Ableitung der folgenden Funktionen $\mathbb{R} \longrightarrow \mathbb{R}$:

(a)
$$\sqrt{1+x^2}$$
 (b) $\cos(\cos x)$

(b)
$$\cos(\cos x)$$

(c)
$$\exp\left(\frac{1}{1+x^4}\right)$$

$$\left(\mathbf{d}\right) \ \frac{e^x - 1}{e^x + 1}$$

(e)
$$x^{\sin x}$$
 (definiert nur für $x > 0$) (f) $\frac{(x^2 \cos x + 2)^2}{\log(2 + x^2) + x^6}$

(f)
$$\frac{(x^2 \cos x + 2)^2}{\log(2+x^2) + x^6}$$

Lösung.

(1)
$$f_1'(x) = \frac{2x}{2\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}$$

(1)
$$f_1'(x) = \frac{2x}{2\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}$$

(2) $f_2'(x) = -\sin(\cos x) \cdot (-\sin x) = \sin(\cos x)\sin x$

(3)
$$f_3'(x) = \exp\left(\frac{1}{1+x^4}\right) \frac{-4x^3}{(1+x^4)^2}$$

(4)
$$f_4'(x) = \frac{e^x(e^x+1)-(e^x-1)e^x}{(e^x+1)^2} = \frac{2e^x}{(e^x+1)^2}$$

(5)
$$f_5'(x) = (e^{\sin x \log x})' = e^{\sin x \log x} (\frac{\sin x}{x} + \cos x \log x) = x^{\sin x} (\frac{\sin x}{x} + \cos x \log x).$$

$$(3) \ f_3'(x) = \exp\left(\frac{1}{1+x^4}\right) \frac{-4x^3}{(1+x^4)^2}$$

$$(4) \ f_4'(x) = \frac{e^x(e^x+1) - (e^x-1)e^x}{(e^x+1)^2} = \frac{2e^x}{(e^x+1)^2}$$

$$(5) \ f_5'(x) = (e^{\sin x \log x})' = e^{\sin x \log x} (\frac{\sin x}{x} + \cos x \log x) = x^{\sin x} (\frac{\sin x}{x} + \cos x \log x).$$

$$(6) \ f_6'(x) = \frac{2(x^2 \cos x + 2)(2x \cos x - x^2 \sin x)(\log(2+x^2) + x^6) - (x^2 \cos x + 2)^2 (\frac{2x}{2+x^2} + 6x^5)}{(\log(2+x^2) + x^6)^2}$$

Aufgabe 3. Zeigen Sie, dass Ableitungen die Zwischenwerteigenschaft besitzen: Sind $a, b \in \mathbb{R}$ mit a < b und ist $f: [a, b] \longrightarrow \mathbb{R}$ differenzierbar, so nimmt f' jeden Wert zwischen f'(a) und f'(b) an.

Lösung. Sei c ein Wert zwischen f'(a) und f'(b). Wir betrachten die Funktion $g:[a,b] \longrightarrow \mathbb{R}$ definiert durch g(x) := f(x) - cx für $x \in [a,b]$. Dann ist g differenzierbar mit

$$g'(x) = f'(x) - c.$$

Besitzt g' keine Nullstelle, so muss g monoton sein (sogar streng monoton, siehe MC-Aufgabe (2)), also gilt entweder $g' \geq 0$, falls g monoton wachsend ist, oder $g' \leq 0$, falls g monoton fallend ist. Beachten wir zusätzlich, dass g' laut Annahme keine Nullstelle hat, so folgt g' > 0 oder g' < 0. Äquivalenterweise gilt entweder f'(x) > c für alle $x \in [a, b]$ oder f'(x) < c für alle $x \in [a, b]$. Beide dieser Möglichkeiten widersprechen jedoch der Wahl von c. Dies zeigt, dass g' eine Nullstelle besitzen muss, also dass es ein $\xi \in [a, b]$ gibt mit $f'(\xi) = c$. \square

Aufgabe 4. Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ eine differenzierbare Funktion, derart, dass f(x) = f'(x) für alle $x \in \mathbb{R}$ gilt.

- (1) Zeigen Sie, dass eine reelle Zahl c existiert, mit $f(x) = c \cdot \exp(x)$.
- (2) Was passiert, falls f nur Definitionsbereich $\mathbb{R} \setminus \{0\}$ anstatt \mathbb{R} hat und ebenfalls f' = f erfüllt?

Lösung.

(1) Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ eine differenzierbare Funktion, derart, dass f = f'. Definiere eine Funktion $g: \mathbb{R} \longrightarrow \mathbb{R}$ durch $g(x) = \frac{f(x)}{\exp(x)}$. Wir berechnen die Ableitung mit der Quotientenregel

$$g'(x) = \frac{f'(x)\exp(x) - f(x)\exp'(x)}{\exp(2x)}.$$

Doch weil f' = f und $\exp' = \exp$ gilt, ist die Ableitung g' = 0. Darum ist g konstant, g(x) = c für alle $x \in \mathbb{R}$. Weil aber $f(x) = g(x) \exp(x)$ ist, folgt $f(x) = c \exp(x)$.

(2) Wir können analog wie in (a) vorgehen. Wir erhalten jedoch für g nur, dass g konstant auf $(-\infty,0)$ und $(0,\infty)$ ist. Mit Hilfe der charakteristischen Funktion können wir $g=c_1\mathbb{1}_{(-\infty,0)}+c_2\mathbb{1}_{(0,\infty)}$ schreiben, für zwei reelle Zahlen $c_1,c_2\in\mathbb{R}$. (Erinnerung: $\mathbb{1}_A(x)=1$ genau dann wenn $x\in A$ und $\mathbb{1}_A(x)=0$ genau dann wenn $x\notin A$). Wir erhalten $f(x)=e^x(c_1\mathbb{1}_{(-\infty,0)}+c_2\mathbb{1}_{(0,\infty)})$.

Aufgabe 5. Sei $f:[0,1] \to \mathbb{R}$ eine differenzierbare Funktion mit f(0)=0. Wenn $M \ge 0$ derart, dass $|f'(x)| \le M |f(x)|$ für alle $x \in [0,1]$ existiert, dann zeigen Sie f(x)=0 für alle $x \in [0,1]$.

Lösung. Wir wollen anstatt f die nichtnegative Funktion $g:[0,1] \longrightarrow \mathbb{R}$ gegeben durch $g=f^2$ betrachten. Die Funktion g ist differenzierbar und g(0)=0. Ausserdem erfüllt sie eine ähnliche Eigenschaft wie f:

$$|g'(x)| = 2|f(x)f'(x)| \le 2|f(x)|M|f(x)| = 2M|g(x)| = 2Mg(x).$$

Betrachte nun $h:[0,1] \longrightarrow \mathbb{R}$ gegeben durch $h(x) = \exp(-2Mx)g(x)$. Die Funktion h ist differenzierbar und hat Ableitung

$$h'(x) = \exp(-2Mx) (g'(x) - 2Mg(x)).$$

Weil die Exponentialfunktion strikt positiv ist und der zweite Term wegen der gefundenen Abschätzung ≤ 0 ist, erhalten wir $h'(x) \leq 0$, das heisst h ist monoton fallend. Doch weil $h \ge 0$ und h(0) = 0 ist, schliessen wir h(x) = 0 für alle $x \in [0,1]$. Dies impliziert g(x) = 0und dann auch f(x) = 0 für alle $x \in [0, 1]$.

Aufgabe 6. Finden Sie ein Gegenbeispiel für jede falsche Aussage in Aufgabe 7.(1).

Lösung.

- (a) $x \in \mathbb{R} \longrightarrow x^2$
- (c) $x \in \mathbb{R} \longrightarrow e^x$.

(c)
$$x \in \mathbb{R} \longrightarrow e^x$$
.
(d) $x \in \longrightarrow \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$

Aufgabe 7. Multiple choice Aufgabe.

- (1) Sei $I \subset \mathbb{R}$ ein nichtleeres Intervall und $f: I \longrightarrow \mathbb{R}$ eine Funktion. Welche der folgenden Aussagen gelten im Allgemeinen?
 - (a) Ist f differenzierbar, so ist f gleichmässig stetig.
 - (b) Ist f differenzierbar, so ist f stetig.
 - (c) Ist f differenzierbar, so ist f Lipschitz-stetig.
 - (d) Ist f differenzierbar, so ist f' stetig.
- (2) Betrachte die folgende Aussage: "Sei $I \subseteq \mathbb{R}$ ein nichtleeres Intervall und $f: I \longrightarrow \mathbb{R}$ differenzierbar mit

$$f'(x) \neq 0$$

für alle $x \in I$. Dann ist f streng monoton.". Diese Aussage...

- (a) ... gilt im Allgemeinen.
- (b) ... gilt nicht im Allgemeinen. Die Aussage stimmt aber, wenn f stetig differen-
- (c) ... selbst für stetig differenzierbares f gilt dies nicht im Allgemeinen.
- (d) ... gilt nie.
- (3) Sei $I \subseteq \mathbb{R}$ ein nichtleeres Intervall und $f: I \longrightarrow \mathbb{R}$ eine differenzierbare Funktion. Welche der folgenden Aussagen gilt im Allgemeinen?
 - (a) Ist $x_0 \in I$ ein lokales Extremum von f, so ist $f'(x_0) = 0$.

- (b) Ist $x_0 \in I$ kein Endpunkt von I und gilt $f'(x_0) = 0$, so ist x_0 ein lokales Extremum von f.
- (c) Seien $a := \inf(I)$ und $b := \sup(I)$. Dann liegen alle lokalen Extrema von f in der Menge $\{a, b\} \cup \{x \in I \mid f_0(x) = 0\}$.
- (d) Sei $a := \inf(I) \in I$. Dann ist a ein lokales Extremum von f.
- (4) Welche der folgenden Funktionen $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x)$ ist <u>nicht</u> bei $x_0 = 0$ differenzierbar?
 - (a) $f(x) = \sqrt{|x|} \sin \sqrt{|x|}$,
 - (b) $f(x) = |x|^{3/2}$,
 - (c) $f(x) = x^2 g(x)$ wobei g(x) = 1 für $x \in \mathbb{Q}$ und g(x) = 0 für $x \in \mathbb{R} \setminus \mathbb{Q}$.
 - (d) keine. Alle Funktionen in (a)-(c) sind bei 0 differenzierbar.
- (5) Welche Aussage ist falsch?
 - (a) $|x|^{3/2} = o(x), (x \longrightarrow 0).$
 - (b) Für jede stetige Funktion $f:(a,b) \longrightarrow \mathbb{R}$ und alle $x_0 \in (a,b)$ gilt: $f(x) f(x_0) = o(x-x_0)$, $(x \longrightarrow x_0)$.
 - (c) $\sqrt{1+x} = 1 + \frac{x}{2} + o(x), (x \longrightarrow 0).$
 - (d) $cos(x) = 1 + o(x), (x \longrightarrow 0).$