Serie 12

TEILBARKEIT, FAKTORIELLE RINGE, HAUPTIDEALRINGE

- 1. Sei K ein Körper. Zeige, dass $K[X^2,X^3] \subset K[X]$ ein Integritätsbereich, aber nicht faktoriell ist.
- 2. Sei R ein faktorieller Ring.
 - (a) Seien $a, b, c \in R$. Zeige:

$$c|ab, ggT(a,c) \sim 1 \Longrightarrow c|b.$$

- (b) Sei $u \in R^{\times}$, und seien p_1, \ldots, p_n Primelemente von R. Zeige, dass die Teiler von $up_1 \cdots p_n$ genau die Elemente der Form $v \cdot \prod_{i \in I} p_i$ sind für alle $v \in R^{\times}$ und alle Teilmengen $I \subset \{1, \ldots, n\}$.
- 3. Betrachte Elemente a_1, \ldots, a_n eines faktoriellen Rings R. Ein Element $b \in R$ mit $\forall i : a_i | b$ heisst gemeinsames Vielfaches von a_1, \ldots, a_n .
 - (a) Zeige, dass ein gemeinsames Vielfaches b von a_1, \ldots, a_n existiert, so dass für jedes gemeinsame Vielfache b' von a_1, \ldots, a_n gilt b|b'.
 - (b) Zeige, dass dieses kleinste gemeinsame Vielfache von a_1, \ldots, a_n eindeutig bis auf Assoziiertheit ist. Wir bezeichnen jedes solche mit $kgV(a_1, \ldots, a_n)$.
 - (c) Zeige, dass $ggT(a_1, a_2) \cdot kgV(a_1, a_2) \sim a_1 \cdot a_2$ gilt.
- 4. Seien a and b positive ganze Zahlen. Beweise unter Verwendung der Isomorphiesätze die Identität

$$ggT(a, b) \cdot kgV(a, b) = ab.$$

5. Sei R ein Hauptidealring. Zeige, dass jedes von Null verschiedene Primideal in R maximal ist.

6. Im Ring $R:=\mathbb{Z}[i\sqrt{5}]\subset\mathbb{C}$ gilt die Gleichheit

$$6 = 2 \cdot 3 = (1 + i\sqrt{5})(1 - i\sqrt{5}).$$

Zeige:

- (a) Die Funktion $N: R \to \mathbb{Z}^{\geqslant 0}, z = a + bi\sqrt{5} \mapsto |z|^2 = a^2 + 5b^2$ ist multiplikativ (das heisst, $\forall \alpha, \beta \in R: N(\alpha\beta) = N(\alpha)N(\beta)$).
- (b) $R^{\times} = \{ u \in R \mid N(u) = 1 \} = \{ \pm 1 \}.$
- (c) Die Elemente $2, 3, 1 + i\sqrt{5}, 1 i\sqrt{5}$ sind unzerlegbar in R.
- (d) Die Elemente 2, 3, $1 + i\sqrt{5}$, $1 i\sqrt{5}$ sind keine Primelemente in R.
- (e) Für das Ideal $I = (2, 1 + i\sqrt{5})$ gilt $I \cdot I = (2)$.
- (f) I ist kein Hauptideal von R.
- (g) I ist ein maximales Ideal von R.
- (h) R ist nicht faktoriell.
- *7. Für $p \in \mathbb{C}$ sei \mathcal{S}_p die Menge aller Paare (U, f) bestehend aus einer offenen Umgebung $U \subset \mathbb{C}$ von p und einer holomorphen Funktion $f: U \to \mathbb{C}$. Zwei solche Paare (U_1, f_1) und (U_2, f_2) nennen wir äquivalent, falls eine Umgebung $V \subset U_1 \cap U_2$ von p existiert mit $f_1|_V = f_2|_V$. Dies ist eine Äquivalenzrelation auf \mathcal{S}_p , und wir bezeichnen die Menge der Äquivalenzklassen mit \mathcal{O}_p . Die Elemente von \mathcal{O}_p heissen $Keime\ holomorpher\ Funktionen\ in\ p$.
 - (a) Zeige, dass die Addition und Multiplikation von holomorphen Funktionen eine Ringstruktur auf \mathcal{O}_p induzieren.
 - (b) Entscheide, ob \mathcal{O}_p ein Hauptidealring ist.