Serie 14

POLYNOMRINGE, IRREDUZIBILITÄTSKRITERIEN

1. Bestimme den verallgemeinerten Inhalt der folgenden Polynome:

(a)
$$f(X) := \frac{1}{2}X^3 - 3X^2 + 2X - \frac{1}{3} \in \mathbb{Q}[X]$$
 bezüglich $R = \mathbb{Z}$.

(b)
$$g(X) := \frac{1}{4}X^3 - \frac{1}{7}X^2 + \frac{1}{6}X - \frac{1}{2} \in \mathbb{Q}[X]$$
 bezüglich $R = \mathbb{Z}$.

(c)
$$h(X) := (Y^2 + 3)^2 X + Y^4 - 9 \in \mathbb{Q}(Y)[X]$$
 bezüglich $R = \mathbb{Q}(Y)$.

- 2. Sei R ein faktorieller Ring mit Quotientenkörper K. Zeige: Ist $f \in K[X]$ normiert, so ist $I(f) \sim \frac{1}{r}$ für ein $r \in R \setminus \{0\}$.
- 3. Bestimme alle irreduziblen Polynome vom Grad ≤ 5 in $\mathbb{F}_2[X]$.
- 4. Seien K ein Körper und $f \in K[X]$ ein Polynom von ungeradem Grad. Zeige, dass

$$Y^2 + Y + f \in K[X, Y]$$

irreduzibel ist.

5. Zeige, dass die folgenden Polynome irreduzibel sind:

(a)
$$f(X) := X^3 - 3X^2 + 2X - 3 \in \mathbb{Q}[X]$$

(b)
$$g(X) := 7X^3 - X^2 + 4X - 2 \in \mathbb{Q}[X]$$

(c)
$$h(X) := X^5 + 4X^2 + 14X + 40 \in \mathbb{Q}[X]$$

6. Zeige, dass die folgenden Polynome irreduzibel sind:

(a)
$$\frac{1}{3}X^3 + \frac{5}{2}X^2 + 3X - 1 \in \mathbb{Q}[X]$$
.

(b)
$$X^3 + 8iX^2 - 6X - 1 + 3i \in \mathbb{Z}[i][X]$$
. (Benutze Aufgabe 2 von Serie 13.)

(c)
$$X^{\ell} + Y^m + Z^n \in \mathbb{C}[X, Y, Z]$$
 für beliebige $\ell, m, n \ge 1$.

7. (a) Lagrange-Interpolation: Sei K ein Körper, seien $a_0, \ldots, a_m \in K$ paarweise verschieden, und seien $b_0, \ldots, b_m \in K$ beliebig. Zeige, dass es genau ein Polynom $f \in K[X]$ vom Grad $\leq m$ gibt mit $f(a_i) = b_i$ für alle $0 \leq i \leq m$.

Hinweis: Benutze die Vandermondesche Determinante oder betrachte für alle $0 \le i \le m$ die Polynome

$$\prod_{\substack{j=0\\j\neq i}}^{m} \frac{X - a_j}{a_i - a_j}.$$

- (b) Zerlege $X^5 + X^4 + 1 \in \mathbb{Z}[X]$ in Primfaktoren mit folgendem Verfahren. Explizite Primfaktorzerlegung nach Kronecker: Sei $f \in \mathbb{Z}[X]$ ein primitives Polynom vom Grad n. Wir nehmen an, f habe eine (noch unbekannte) Faktorisierung $f = g \cdot h$ mit $g, h \in \mathbb{Z}[X]$ und $m := \deg(g) \leqslant \frac{n}{2}$. Um diese zu finden, wählen wir irgendwelche paarweise verschiedene $a_0, \ldots, a_m \in \mathbb{Z}$. Dann muss $g(a_i)|f(a_i)$ in \mathbb{Z} für alle i gelten. Falls $f(a_i) = 0$ für ein i ist, kann $X - a_i$ von f abgespaltet werden und mit $\frac{f}{X - a_i}$ weiter gearbeitet werden. Andernfalls hat $f(a_i)$ für jedes i nur endlich viele Teiler in \mathbb{Z} . Für jedes System von Teilern $b_i|f(a_i)$ liefert (a) höchstens einen Kandidaten für g in $\mathbb{Z}[X]$ mit $g(a_i) = b_i$, für den man testet, ob er f teilt.
- *(c) Beschreibe einen analogen Algorithmus für Polynome in beliebig vielen Variablen über \mathbb{Z} .