1 Gruppen

1.1 Grundbegriffe

1.1.1 Definition: Eine Gruppe ist ein Tripel $(\underline{G}, \circ, \underline{e})$ bestehend aus einer Menge \underline{G} mit einer Abbildung

$$\circ: G \times G \to G, (a,b) \mapsto a \circ b$$

und einem ausgezeichneten Element $e \in G$, so dass gilt:

$$\forall a, b, c \in G: \quad \underline{a \circ (b \circ c) = (a \circ b) \circ c} \quad (Assoziativit \ddot{a}t)$$

$$\forall a \in G : \underline{e \circ a = a}$$
 (Linksneutrales Element)

$$\forall a \in G \ \exists a' \in G \colon \ \underline{a' \circ a = e}$$
 (Linksinverses Element)

Die Gruppe heisst kommutativ oder abelsch, wenn zusätzlich gilt:

$$\forall a, b \in G: \quad \underline{a \circ b} = b \circ a$$
 (Kommutativität)

1.1.2 Proposition: In jeder Gruppe (G, \circ, e) gilt:

- (a) Jedes linksneutrale Element e ist auch rechtsneutral, das heisst, es gilt $\forall a \in G : a \circ e = a$. Wir nennen e darum kurz neutrales Element von G.
- (b) Jedes zu $a \in G$ linksinverse Element $a' \in G$ ist auch rechtsinvers, das heisst, es gilt $a \circ a' = e$. Wir nennen a' darum kurz *inverses Element zu a*.
- (c) Das neutrale Element von G ist eindeutig bestimmt.
- (d) Zu jedem $a \in G$ ist das inverse Element eindeutig bestimmt. Die Standardbezeichnung dafür ist a^{-1} .
- (e) Für alle $a \in G$ gilt $(a^{-1})^{-1} = a$.

 Server, $a \circ a^{-1} = e$ and (b). Also it a linearization of $a \circ a^{-1} = e$ and (b). Also it a linearization of $a \circ a^{-1} = e$.

 (f) Für alle $a, b \in G$ gilt $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$. Bear $(b \circ a^{-1})(ab) = b \circ (a \circ a)b = b \circ b = e$.
- (g) Für alle $a, b \in G$ existiert ein eindeutiges $x \in G$ mit $\underline{a \circ x = b}$, nämlich $x = a^{-1} \circ b$.
- (h) Für alle $a, b \in G$ existiert ein eindeutiges $y \in G$ mit $y \circ a = b$, nämlich $y = b \circ a^{-1}$.
- (i) Für alle $a, b, c \in G$ gilt $b = c \longleftrightarrow a \circ b = a \circ c$. (Kürzungsregel links)
- (j) Für alle $a,b,c\in G$ gilt $b=c\longleftrightarrow b\circ a=c\circ a.$ (Kürzungsregel rechts)
- (g) $ax=b \Rightarrow x = ex = (\bar{a}a)x = \bar{a}(ax) = \bar{a}b$ $x=\bar{a}b \Rightarrow ax = a(\bar{a}b) = (\bar{a}b)b = eb = b$

1.1.3 Proposition: Für jede natürliche Zahl $n \ge 1$ und für beliebige $\underline{a_1, \ldots, a_n} \in G$ gilt: Bei jeder möglichen Klammerung der (a priori nicht wohldefinierten) Formel $\underline{a_1 \circ \ldots \circ a_n}$ ist das Resultat gleich. Wir dürfen hier also doch auf Klammern verzichten.

1.1.4 Konvention: Oft schreibt man nur kurz G für das ganze Tripel und sieht die Zusatzdaten als implizit mitgegeben an. Wenn dabei keine Notation für die Gruppenoperation angegeben wird, bezeichnet man diese multiplikativ in der Form $g \cdot h$ oder gh und das neutrale Element mit $\underline{1}_G$ oder einfach $\underline{1}$. Das tun ab sofort auch wir und verwenden ein spezielles Symbol wie \circ nur, wenn Verwechslungen zu vermeiden sind.

Sei also G eine Gruppe.

1.1.5 Definition: Für jedes Element $g \in G$ und jede ganze Zahl n definieren wir die n-te Potenz von g induktiv durch

$$g^{n} := \begin{cases} 1 & \text{falls } \underline{n=0}, \\ g & \text{falls } \underline{n=1}, \\ g \cdot g^{n-1} & \text{falls } \underline{n>1}, \\ g^{-1} \cdot g^{n+1} & \text{falls } \underline{n<-1}. \end{cases}$$

1.1.6 Proposition: Für alle $g, h \in G$ und alle $m, n \in \mathbb{Z}$ gilt:

$$g^{m+n} = g^m \cdot g^n$$

$$g^{m \cdot n} = (g^m)^n$$

$$(g \cdot h)^m = g^m \cdot h^m \text{ falls } gh = hg \text{ ist.}$$

- **1.1.7 Konvention:** Eine abelsche Gruppe (und nur eine abelsche) schreibt man oft additiv, das heisst mit dem Operator $\underline{+}$, dem neutralen Element $\underline{0}_G$ oder $\underline{0}$, und dem inversen Element $\underline{-g}$ zu \underline{g} . Für $\underline{g} + (-h)$ schreibt man dann auch kürzer $\underline{g} \underline{h}$. Anstatt der n-ten Potenz spricht man von dem n-ten Vielfachen $n \cdot \underline{g}$. Die obigen Eigenschaften übersetzen sich dann in folgende:
- **1.1.8 Proposition:** Jede additiv geschriebene abelsche Gruppe G ist auf eindeutige Weise ein \mathbb{Z} -Modul. Insbesondere gilt für alle $g, h \in G$ und alle $m, n \in \mathbb{Z}$:

$$0 \cdot g = 0$$

$$(\pm 1) \cdot g = \pm g$$

$$(m \pm n) \cdot g = m \cdot g \pm n \cdot g$$

$$(m \cdot n) \cdot g = m \cdot (n \cdot g)$$

$$m \cdot (g \pm h) = m \cdot g \pm m \cdot h$$

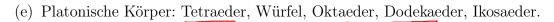
1.1.9 Beispiel: (a) Die additive Gruppe eines Rings, eines Körpers, eines Vektorraums.

(b) Die Einheitengruppe eines Rings, eines Körpers.

(c) Die Matrizengruppen $GL_n(K)$, $SL_n(K)$, O(n), SO(n), U(n).

(d) Die Symmetriegruppe einer Teilmenge X des euklidischen Raums \mathbb{R}^n :

$$\{A \in \mathcal{O}(n) \mid \underline{A \cdot X} = X\}$$
 oder $\{A \in \mathcal{SO}(n) \mid A \cdot X = X\}.$



Ein regelmässiges ebenes Polygon im \mathbb{R}^3 , aufgefasst als degenerierter regelmässiger Polyeder mit zwei Seitenflächen, heisst *Dieder* (gesprochen *Di-Eder*). Er ist invariant unter n Drehungen um seine Symmetrieachse, sowie n weiteren Drehungen um 180° , nämlich um alle durch den Mittelpunkt und eine Ecke oder Kantenmitte gehenden Geraden. Zusammen bilden diese 2n Symmetrien die Diedergruppe vom Grad n, bezeichnet mit D_n .

Elemente 1,
$$T$$
, ..., T^{n-1}

$$S = \text{Briday on } \overline{u}$$

$$S = \text{Triangle}$$

$$S = T^{-1}S$$

1.1.10 Bemerkung: Niemand beschreibt eine Gruppe mittels ihrer Gruppentafel.

Untergruppen

1.2.1 Definition: Eine *Untergruppe von G* ist eine Teilmenge $H \subset G$ mit den Eigenschaften:

- (a) $1_G \in H$.
- (b) $\forall h, h' \in H : \underline{hh' \in H}$. (c) $\forall h \in H : \underline{h^{-1} \in H}$.

Die Aussage "H ist eine Untergruppe von G" bezeichnet man mit H < G oder G > H.

1.2.2 Proposition: Eine Teilmenge $H \subset G$ ist eine Untergruppe genau dann, wenn sie zusammen mit der Restriktion der Gruppenoperation von G selbst eine Gruppe bildet. Dann ist weiter das Einselement von G gleich dem Einselement von H.

HXH - 1/2, (h, h) - bir a c Wire e'ett en Girdens att, dan vine e'e'=e'=ee' = e'=e.

- **1.2.3 Beispiel:** Die triviale Untergruppe $1 = \{1_G\}$ und G selbst sind Untergruppen von G.
- **1.2.4 Beispiel:** Die Untergruppen einer additiv geschriebenen abelsche Gruppe sind genau die \mathbb{Z} -Untermoduln. Insbesondere sind die Untergruppen von \mathbb{Z} genau die Ideale von \mathbb{Z} , also die Untergruppen $n\mathbb{Z}$ für alle $n \geq 0$.
- 1.2.5 Beispiel: Die Untergruppen

$$SO_n(K) < O_n(K)$$

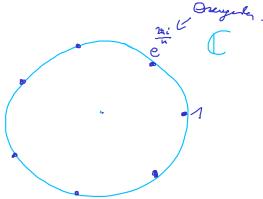
 $\land \qquad \land$
 $SL_n(K) < GL_n(K).$

1.2.6 Beispiel: Die Untergruppen der Diedergruppe.

- 1.2.7 Proposition: Jede Untergruppe einer Untergruppe von G ist eine Untergruppe von G.
- 1.2.8 Proposition: Der Durchschnitt jeder nichtleeren Kollektion von Untergruppen von G ist ein Untergruppe von G.
- **1.2.9 Proposition:** Für jede Teilmenge $\underline{S} \subset G$ existiert eine eindeutige kleinste Untergruppe von G, welche S enthält. Diese besteht aus allen Elementen der Form $a_1^{\varepsilon_1} \cdots a_n^{\varepsilon_n}$ für alle $n \ge 0$, alle $a_i \in S$, und alle $\varepsilon_i \in \{\pm 1\}$.

1.2.10 Definition: Diese Untergruppe heisst *die von S erzeugte Untergruppe* $\langle S \rangle$. Im Fall einer endlichen Teilmenge schreiben wir auch kürzer $\langle a_1, \ldots, a_n \rangle = \langle \{a_1, \ldots, a_n\} \rangle$ und nennen diese Untergruppe *endlich erzeugt*. Ist $G = \langle S \rangle$, so nennen wir G von S erzeugt.

- **1.2.11 Definition:** Eine von einem Element erzeugte Gruppe $G = \langle a \rangle$ heisst zyklisch.
- **1.2.12 Beispiel:** Die additiven Gruppen von \mathbb{Z} und $\mathbb{Z}/n\mathbb{Z}$ für jedes $n \ge 1$ sind zyklisch. Die Untergruppen von \mathbb{Z} sind die $m\mathbb{Z}$ für alle $m \ge 0$; die Untergruppen von $\mathbb{Z}/n\mathbb{Z}$ die $m\mathbb{Z}/n\mathbb{Z}$ für alle $m \mid n$.
- **1.2.13 Beispiel:** Die Gruppe der n-ten Einheitswurzeln $\underline{\mu_n} := \{\zeta \in \mathbb{C} \mid \zeta^n = 1\} < \mathbb{C}^\times$ ist zyklisch. Dass diese auf einem Kreis liegen, ist der Ursprung der Bezeichnung "zyklisch".



Die Kommutativität oder Nichtkommutativität einer Gruppe hat mit einer Reihe von weiteren Untergrup-

pen zu tun:

1.2.14 Definition: (a) Der *Kommutator* von
$$g, h \in G$$
 ist das Element $[g, h] := ghg^{-1}h^{-1}$.

(b) Die Kommutator
gruppe von G ist die von allen Kommutatoren erzeugte Untergruppe
 $= \bigcup_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$

$$\underline{[G,G]} := \langle \{\underline{[g,h]} \mid g,h \in G\} \rangle.$$

(c) Der Zentralisator eines Elements $g \in G$ ist die Untergruppe

$$g \in \underbrace{\operatorname{Cent}_{\dot{G}}(g) := G_g := \{x \in G \mid xg = gx\}}_{\text{gradia Untergruppe}} : \subset G$$

(d) Das Zentrum von G ist die Untergruppe

$$Z(G) := \{ x \in G \mid \forall y \in G \colon xy = yx \}.$$

$$Z(G) := \{ x \in G \mid \forall y \in G \colon xy = yx \}.$$

1.2.15 Proposition: (a) $gh = hg \iff [g, h] = 1$.

(b)
$$Cent_G(g)$$
 ist die eindeutige grösste Untergruppe $H < G$ mit $g \in Z(H)$.

(c) $Z(G) = \bigcap_{g \in G} Cent_G(g) < G$.

(d) $g \in Z(G) \iff Cent_G(g) = G$.

(e) $Z(G) = \bigcap_{g \in G} Cent_G(g) = G$.

(f) $Z(G) = \bigcap_{g \in G} Cent_G(g) = G$.

(c)
$$Z(G) = \bigcap_{g \in G} \underline{\operatorname{Cent}}_G(g) < G.$$

$$\operatorname{ent}_G(g) = G.$$
 And $\operatorname{H} \subset \operatorname{Cart}_G(g)$

(d)
$$g \in Z(G) \iff \operatorname{Cent}_G(g) = G$$
.

(e)
$$G$$
 ist abelsch $\iff Z(G) = G \iff [G, G] = 1$.

- **1.2.16 Beispiel:** (a) Die Kommutatorgruppe von $GL_n(K)$ ist $SL_n(K)$ ausser für |K| = n = 2.
 - (b) Sei $g \in \mathrm{GL}_n(K)$ eine Diagonalmatrix mit paarweise verschiedenen Diagonaleinträgen. Dann ist $\operatorname{Cent}_{\operatorname{GL}_n(K)}$ die Gruppe aller invertierbarer Diagonalmatrizen.
 - (c) Das Zentrum von $GL_n(K)$ ist die Untergruppe aller Skalarmatrizen $K^{\times} \cdot I_n$.

(b)
$$g = \begin{pmatrix} a_i & 0 \\ 0 & a_n \end{pmatrix}$$
, $g = \begin{pmatrix} b_{ij} \end{pmatrix}_{i,j} \in Gl_n(\mathcal{U})$; $g = b_g$ $g.d.v.$ $\forall i,j$:
$$(a_i b_{ij})_{i,j} = a_j b_{i,j}$$

$$(a_i b_{ij})_{i,j} = a_j b_{i,j}$$

$$(C) \begin{array}{c} \forall i,j : (\alpha_i - \alpha_j) \delta_{i,j} = 0. \end{array} \Longrightarrow \begin{array}{c} \forall i \neq j : \delta_{i,j} = 0. \Longrightarrow \mathbb{B} \text{ Diagnolumbriz.} \\ \text{ (C) } \overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*} = : g \quad \text{ Re } i \neq j : \text{ log} + : \text{ GLn}(\mathbb{R}). \end{array} \Longrightarrow \begin{array}{c} g \mathbb{B} = \mathbb{B}_{g} \quad \text{ g.d.w.} \quad (\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*}) \mathbb{B} = \mathbb{B}(\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*}) \\ \text{ (C) } \overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*} = : g \quad \text{ Re } i \neq j : \text{ log} + : \text{ GLn}(\mathbb{R}). \end{array} \Longrightarrow \begin{array}{c} g \mathbb{B} = \mathbb{B}_{g} \quad \text{ g.d.w.} \quad (\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*}) \mathbb{B} = \mathbb{B}(\overline{\mathbb{E}}_{i,j}^{*}). \end{array}$$

$$(C) \overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*} = : g \quad \text{ Re } i \neq j : \text{ log} + : \text{ GLn}(\mathbb{R}). \Longrightarrow g \mathbb{B} = \mathbb{B}_{g} \quad \text{ g.d.w.} \quad (\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*}) \mathbb{B} = \mathbb{B}(\overline{\mathbb{E}}_{i,j}^{*}).$$

$$(C) \overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*} = : g \quad \text{ Re } i \neq j : \text{ log} + : \text{ GLn}(\mathbb{R}). \Longrightarrow g \mathbb{B} = \mathbb{B}_{g} \quad \text{ g.d.w.} \quad (\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*}) \mathbb{B} = \mathbb{B}(\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*})$$

$$(C) \overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*} = : g \quad \text{ Re } i \neq j : \text{ log} + : \text{ GLn}(\mathbb{R}). \Longrightarrow g \mathbb{B} = \mathbb{B}_{g} \quad \text{ g.d.w.} \quad (\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*}) \mathbb{B} = \mathbb{B}(\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*})$$

$$(C) \overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*} = : g \quad \text{ Re } i \neq j : \text{ log} + : \text{ GLn}(\mathbb{R}). \Longrightarrow g \mathbb{B} = \mathbb{B}(\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}_{i,j}^{*}) \mathbb{B}(\overline{\mathbb{I}}_{i} + \overline{\mathbb{E}}$$

(a)
$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a & -1 \\ 0 & 1 \end{pmatrix}$$

$$\begin{vmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} 1 & a & -1 \\ 0 & 1 \end{pmatrix}$$

$$\begin{vmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} 1 & a & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & ce_1 \\ 0 & 1$$

Andy:
$$\forall b \in \mathbb{R}$$
. $\binom{1}{b} = \binom{1}{b} = \binom{1}$