Exercise 2.1.

Prove that the system of elementary sets

 $\mathcal{A} := \{ A \subset \mathbb{R}^n \mid A \text{ is the union of finitely many disjoint intervals} \}$

is an algebra¹.

Exercise 2.2.

Let (X, Σ, μ) be a measure space. A subset $A \in \Sigma$ is called μ -atom, if it holds $\mu(A) > 0$ and for every $B \in \Sigma$ such that $B \subset A$, we have either $\mu(A \setminus B) = 0$ or $\mu(B) = 0$.

(a) Let A be a μ -atom and $B \in \Sigma$ such that $B \subset A$. Prove that either $\mu(B) = \mu(A)$ or $\mu(B) = 0$.

(b) Let $A \in \Sigma$ and assume $0 < \mu(A) < \infty$. Moreover, assume that for all $B \in \Sigma$ with $B \subset A$, it holds that either $\mu(B) = 0$ or $\mu(B) = \mu(A)$. Show that A is a μ -atom.

(c) Assume that μ is σ -finite, that is, there is a countable collection $\{S_j\} \subset \Sigma$ with $\mu(S_j) < \infty$ and $X = \bigcup_j S_j$. Show that for every μ -atom A, it holds $\mu(A) < \infty$.

Exercise 2.3.

Let X be an uncountable set and

$$\mathcal{B} := \left\{ E \subset X \mid E \text{ or } E^c \text{ countable} \right\}.$$

Show that $\mu: \mathcal{B} \to [0,\infty]$ defined by

$$\mu(E) := \begin{cases} 0 & \text{if } E \text{ is countable} \\ 1 & \text{else} \end{cases}$$

is a pre-measure on \mathcal{B}^2 .

Exercise 2.4.

Let X be a set and $\mu : \mathcal{P}(X) \to [0, \infty]$ a measure on X. Denote by \mathcal{A}_{μ} the σ -algebra of μ -measurable subsets of X. Let $B \subset X$ be an arbitrary subset.

(a) Denote by $\mu \sqcup B$ the restriction of μ to B defined by:

$$\forall A \subset X : \quad \mu \, \llcorner \, B(A) := \mu(A \cap B).$$

Show that $\mu \sqcup B$ is a measure.

(b) Show that \mathcal{A}_{μ} is a subset of the σ -algebra of $(\mu \sqcup B)$ -measurable sets.

Exercise 2.5.

Let X, Y be two sets, $\mu : \mathcal{P}(X) \to [0, \infty]$ a measure on X and $f : X \to Y$ a map. How can we naturally define a "pushforward measure" $f_*\mu$ on Y? Prove that for such a measure, if \mathcal{A}_{μ} denotes the σ -algebra of μ -measurable sets in X, then the collection of sets³

$$f_*(\mathcal{A}_{\mu}) := \{ B \subseteq Y \mid f^{-1}(B) \in \mathcal{A}_{\mu} \}$$

is a subset of the σ -algebra of $f_*\mu$ -measurable subsets of Y.

 $^{^{1}}A$ sketch of the proof has been given in the lecture.

²See Definition 1.2.19 in the lecture notes.

³This is the σ -algebra introduced in Exercise 1.4 from Sheet 1.