Exercise 3.1.

Let μ be a measure on X and $A \subset X$ such that $\mu(A) < \infty$. Let $\{A_j\}_{j \in \mathbb{N}}$ be a countable family of μ -measurable subsets in X such that $A_j \subset A$ for all j. Assume that $\mu(A_j) \ge c_0 > 0$ for all $j \in \mathbb{N}$. Show that:

$$\mu\Big(\limsup_{j\to\infty}A_j\Big)\ge c_0.$$

Exercise 3.2.

Denote by λ the Lebesgue measure on \mathbb{R} . Let $E \subset [0,1]$ be a Lebesgue measurable set of strictly positive measure, i.e. $\lambda(E) > 0$. Show that for any $0 \leq \delta \leq \lambda(E)$, there exists a measurable subset of E having measure exactly δ .

Hint: Introduce the function which associates to $t \in [0, 1]$ the measure of $[0, t] \cap E$. Is it continuous?

Exercise 3.3.

Let

 $\mathcal{A} = \{ A \subset \mathbb{R}^n \mid A \text{ is the union of finitely many disjoint intervals} \}$

denote the algebra of elementary sets in \mathbb{R}^n . Show that the volume function vol introduced in the lecture¹ for elementary sets is a pre-measure.

Remark: For $I = I_1 \times \ldots \times I_n$ an interval in \mathbb{R}^n , its volume is defined by

$$\operatorname{vol}(I) = \prod_{k=1}^{n} \operatorname{vol}(I_k),$$

where for an interval $I_k \subseteq \mathbb{R}$, $\operatorname{vol}(I_k)$ is the length of I_k .

Exercise 3.4.

Let X be any set with more than one element and consider the measure $\mu : \mathcal{P}(X) \to [0, +\infty]$ defined by:

$$\mu(A) = \begin{cases} 1 & \text{if } A \neq \emptyset \\ 0 & \text{else} \end{cases}$$

Give an example of a non- μ -measurable subset.

¹Definition 1.3.1 in the Lecture Notes.