Exercise 4.1.

Prove that the Lebesgue measure is invariant under translations, reflections and rotations, i.e. under all motions of the form

$$\Phi: \mathbb{R}^n \to \mathbb{R}^n, \quad \Phi(x) = x_0 + Rx,$$

for $x_0 \in \mathbb{R}^n$ and $R \in O(n)$.

Hint: You may use the invariance of the Jordan measure, see Satz 9.3.2 in Struwe's lecture notes.

Exercise 4.2.

Show that every countable subset of \mathbb{R} is a Borel set and has Lebesgue measure zero.

Exercise 4.3.

Show that the open ball $B(x,r) := \{y \in \mathbb{R}^n \mid |y-x| < r\}$ and the closed ball $\overline{B(x,r)} :=$ $\{y \in \mathbb{R}^n \mid |y-x| \leq r\}$ in \mathbb{R}^n are Jordan measurable with Jordan measure $c_n r^n$, for some constant $c_n > 0$ depending only on n.

Exercise 4.4.

(a) Let $A \subset \mathbb{R}$ be a subset with Lebesgue measure $\mathcal{L}^1(A) > 0$. Show that there exists a subset $B \subset A$ which is **not** \mathcal{L}^1 -measurable.

(b) Find an example of a countable, pairwise disjoint collection $\{E_k\}_k$ of subsets in \mathbb{R} , such that:

$$\mathcal{L}^1\Big(\bigcup_{k=1}^{\infty} E_k\Big) < \sum_{k=1}^{\infty} \mathcal{L}^1(E_k).$$

Exercise 4.5.

Fix some $0 < \beta < 1/3$ and define $I_1 = [0, 1]$. For every $n \ge 1$, let $I_{n+1} \subset I_n$ be the collection of intervals obtained removing from every interval in I_n its centered open subinterval of length β^n . Then define by $C_{\beta} = \bigcap_{n=1}^{\infty} I_n$, the fat Cantor set corresponding to β . Show that:

(a) C_{β} is Lebesgue measurable with measure $\mathcal{L}^1(C_{\beta}) = 1 - \frac{\beta}{1-2\beta}$.

(b) C_{β} is not Jordan measurable. Indeed it holds $\underline{\mu}(C_{\beta}) = 0$ and $\overline{\mu}(C_{\beta}) = 1 - \frac{\beta}{1-2\beta} > 0$.