Exercise 6.1.

For $s \ge 0$ and $\emptyset \ne A \subset \mathbb{R}^n$, we define

$$\mathcal{H}^s_{\infty}(A) := \inf \left\{ \sum_{k \in I} r^s_k \mid A \subset \bigcup_{k \in I} B(x_k, r_k), \ r_k > 0 \right\},\$$

where the set of indices I is at most countable. One can check that \mathcal{H}^s_{∞} is a measure. Prove that $\mathcal{H}^{1/2}_{\infty}$ is not Borel on \mathbb{R} .

Remark. Note that the definition of \mathcal{H}^s_{∞} coincides with Definition 1.8.1 in the Lecture Notes for $\delta = \infty$.

Exercise 6.2.

Prove the following claims.

(a) The Lebesgue measure \mathcal{L}^n is a Radon measure on \mathbb{R}^n .

(b) The Hausdorff measure \mathcal{H}^s is not a Radon measure for s < n, but it is a Radon measure for $s \ge n$.

(c) If μ is a Radon measure and $A \subset \mathbb{R}^n$ is μ -measurable, then $\mu \sqcup A$ given by

 $(\mu \, {\mathrel{\sqsubseteq}}\, A)(B) := \mu(A \cap B), \ \forall \ B \subset \mathbb{R}^n$

is a Radon measure as well.

Exercise 6.3.

Given any subset $A \subset \mathbb{R}^n$, show that $\dim_{\mathcal{H}}(A) = \sup\{t \ge 0 \mid \mathcal{H}^t(A) = +\infty\}$.

Exercise 6.4.

Let $\gamma: [a, b] \to \mathbb{R}^n$ be a continuous injective curve. We define the arc length of γ as

$$L(\gamma) := \sup\left\{\sum_{i=1}^{N} d(\gamma(t_{i-1}), \gamma(t_i)) \mid N \in \mathbb{N}, \ a \le t_0 \le t_1 \le \ldots \le t_N \le b\right\}.$$

Show that $\mathcal{H}^1(\operatorname{Im}(\gamma)) = \frac{1}{2}L(\gamma)$.

Exercise 6.5.

Consider the continuous function $f: [0,1] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x > 0\\ 0, & x = 0 \end{cases}.$$

(a) Show that the graph of f has infinite length as a curve, and therefore the set

$$A := \{ (x, f(x)) \mid x \in [0, 1] \}$$

has $\mathcal{H}^1(A) = \infty$.

Hint: use Exercise 6.4 to relate the length with the \mathcal{H}^1 measure.

(b) Show that $\mathcal{H}^s(A) = 0$ if s > 1.

(c) Conclude that $\dim_{\mathcal{H}}(A) = 1$.