Aufgabe 8.1.

Beweise das erste Prinzip von Littlewood: Sei μ ein Radon-Mass auf \mathbb{R}^n und $E \subseteq \mathbb{R}^n$ eine μ -messbare Menge mit $\mu(E) < \infty$. Dann gibt es zu jedem $\varepsilon > 0$ eine Elementarfigur F mit $\mu(E \triangle F) < \varepsilon$.

Aufgabe 8.2.

Es seien $f_k : \mathbb{R}^n \to \mathbb{R}$ \mathcal{L}^n -messbare Funktionen $(k \in \mathbb{N})$. Es gelte:

$$\mathcal{L}^{n}(\{x \mid |f_{k}(x) - f_{k+1}(x)| > 2^{-k}\}) < 2^{-k}$$

für alle $k \in \mathbb{N}$. Zeige: Der Limes $\lim_{k \to \infty} f_k(x)$ existiert fast überall.

Aufgabe 8.3.

Es sei f eine endliche, μ -messbare Funktion, und $(f_k)_{k\in\mathbb{N}}$ eine Folge μ -messbarer Funktionen mit folgender Eigenschaft: Jede Teilfolge $(f_{k_j})_{j\in\mathbb{N}}$ enthält eine weitere Teilfolge, die im Mass μ gegen f konvergiert.

- (a) Zeige, dass die gesamte Folge $(f_k)_{k\in\mathbb{N}}$ im Mass μ gegen f konvergiert.
- (b) Zeige, dass die analoge Aussage nicht gilt, wenn man Masskonvergenz durch punktweise Konvergenz μ -fast überall ersetzt.

Aufgabe 8.4.

Gegenbeispiel zu $\varepsilon = 0$ im Satz von Lusin: Finde ein Beispiel einer \mathcal{L}^1 -messbaren Funktion $f:[0,1] \to \mathbb{R}$, sodass für alle \mathcal{L}^1 -messbaren Mengen $M \subset [0,1]$ mit $\mathcal{L}^1(M) = 1$ gilt, dass die Einschränkung $f|_M: M \to \mathbb{R}$ unstetig in allen bis auf endlich viele Punkten von M ist.

Hinweis: Man darf die Existenz einer Lebesgue-messbaren Teilmenge $A \subset [0, 1]$ verwenden, mit der Eigenschaft, dass für alle nicht-leeren, offenen $U \subset [0, 1]$ gilt:

$$\mathcal{L}^1(U \cap A) \cdot \mathcal{L}^1(U \cap A^c) > 0.$$

Eine solche Menge A lässt sich mit Hilfe der Cantor-Menge konstruieren.

Aufgabe 8.5.

Gegenbeispiel zu $\delta = 0$ im Satz von Egoroff: Finde ein Beispiel einer Folge von \mathcal{L}^1 -messbaren Funktionen $f_k : [0,1] \to \overline{\mathbb{R}}$, die fast überall punktweise gegen eine \mathcal{L}^1 -messbare (und \mathcal{L}^1 -fast überall endlich) Funktion f konvergiert, aber für jedes kompakte $F \subset [0,1]$ mit $\mathcal{L}^1(F) = \mathcal{L}^1([0,1])$ ist die Konvergenz auf F nicht gleichmässig.

Aufgabe 8.6.

Sei μ ein Mass auf \mathbb{R}^n , $\Omega \subseteq \mathbb{R}^n$ eine μ -messbare Menge und $f:\Omega \to [0,\infty]$ eine μ -messbare Funktion. Betrachte die Mengen $A_j \subseteq \Omega$ aus Satz 2.2.6 im Skript, die so definiert sind, sodass die Folge von Funktionen

$$f_k = \sum_{j=1}^k \frac{1}{j} \chi_{A_j}$$

punktweise gegen f konvergiert. Falls f beschränkt ist, zeige, dass f_k gleichmässig gegen f konvergiert, d.h.

$$\sup_{x \in \Omega} |f(x) - f_k(x)| \longrightarrow 0 \text{ für } k \to \infty.$$