Aufgabe 10.1.

Sei $f: \Omega \to \overline{\mathbb{R}}$ eine μ -summierbare Funktion und $\Omega_1 \subseteq \Omega$ eine μ -messbare Teilmenge. Zeige, dass $f_1 := f|_{\Omega_1}$ und $f\chi_{\Omega_1}$ μ -summierbar auf Ω_1 bzw. Ω sind, und dass die Gleichung

$$\int_{\Omega_1} f_1 \, d\mu = \int_{\Omega} f \, \chi_{\Omega_1} d\mu$$

gilt.

Aufgabe 10.2.

Zeige, dass wenn $f: \Omega \to \overline{\mathbb{R}}$ eine μ -addierbare Funktion ist und $\Omega_1 \subseteq \Omega$ eine Teilmenge mit $\mu(\Omega_1) = 0$ ist, dann ist

$$\int_{\Omega_1} f \, d\mu = 0.$$

Aufgabe 10.3.

Durch Anwendung des Satzes von Lebesgue mit dem Zählmass auf ℕ, zeige:

$$\lim_{n \to \infty} n \sum_{i=1}^{\infty} \sin\left(\frac{2^{-i}}{n}\right) = 1.$$

Aufgabe 10.4.

Sei λ das Lebesgue Mass auf \mathbb{R} und f eine nicht negative, integrierbare Funktion auf (\mathbb{R}, λ) . Zeige, dass die folgende Gleichung für das Lebesgue Integral gilt:

$$\int_{\mathbb{R}} f d\lambda = \int_{0}^{+\infty} \lambda(\{f > s\}) ds.$$

Hinweis: Zeige die Gleichung zuerst für den Fall, wenn f eine einfache Funktion ist. In diesem Fall wird eine Skizze von f und der Funktion $s \mapsto \lambda(\{f > s\})$ weiterhelfen. Interpretiere beide Seiten im Hinblick auf die Definition des Lebesgue Masses.

Aufgabe 10.5.

Sei $f_n : [0,1] \to \mathbb{R}, n \in \mathbb{N}$, gegeben durch:

$$f_n(x) = \frac{n\sqrt{x}}{1 + n^2 x^2}.$$

Zeige, dass

(a) $f_n(x) \leq \frac{1}{\sqrt{x}}$ auf (0,1] für alle $n \geq 1$;

(b)
$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0.$$

Aufgabe 10.6.

Sei $\Omega \subseteq \mathbb{R}^n$ eine μ -messbare Menge mit $\mu(\Omega) < +\infty$ und sei $\{f_j\}$ eine Folge μ -summierbarer Funktionen $f_j : \Omega \to \overline{\mathbb{R}}$, die gleichmässig gegen f konvergiert. Beweise, dass f μ -summierbar ist und dass

$$\lim_{j \to \infty} \int_{\Omega} f_j \, d\mu = \int_{\Omega} f \, d\mu$$

gilt.