Exercise 10.1.

Let $f : \Omega \to \overline{\mathbb{R}}$ be μ -summable and $\Omega_1 \subseteq \Omega$ be μ -measurable. Show that $f_1 := f|_{\Omega_1}$ and $f\chi_{\Omega_1}$ are μ -summable on Ω_1 and Ω respectively, and that

$$\int_{\Omega_1} f_1 \, d\mu = \int_{\Omega} f \, \chi_{\Omega_1} d\mu$$

Exercise 10.2.

Show that if $f: \Omega \to \overline{\mathbb{R}}$ is a μ -summable function and $\Omega_1 \subseteq \Omega$ has $\mu(\Omega_1) = 0$, then

$$\int_{\Omega_1} f \, d\mu = 0.$$

Exercise 10.3.

By applying Lebesgue's Theorem to the counting measure on \mathbb{N} , show that

$$\lim_{n \to \infty} n \sum_{i=1}^{\infty} \sin\left(\frac{2^{-i}}{n}\right) = 1.$$

Exercise 10.4.

Let λ be the Lebesgue measure on \mathbb{R} and f a nonnegative summable function on (\mathbb{R}, λ) . Show that the following equality of Lebesgue integrals holds:

$$\int_{\mathbb{R}} f d\lambda = \int_{0}^{+\infty} \lambda(\{f > s\}) ds.$$

Hint: In a first instance prove the equality when f is a simple function; in this case, make a picture of f and of the function $s \mapsto \lambda(\{f > s\})$ and interpret the two sides according to the definition of the Lebesgue integral.

Exercise 10.5.

For all $n \in \mathbb{N}$, let $f_n \colon [0,1] \to \mathbb{R}$ be defined by:

$$f_n(x) = \frac{n\sqrt{x}}{1+n^2x^2}.$$

Prove that:

(a)
$$f_n(x) \leq \frac{1}{\sqrt{x}}$$
 on $(0,1]$ for all $n \geq 1$.
(b) $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$.

Exercise 10.6.

Let $\Omega \subseteq \mathbb{R}^n$ be μ -measurable with $\mu(\Omega) < +\infty$ and let $\{f_j\}$ be a sequence of μ -summable $\overline{\mathbb{R}}$ -valued functions such that $f_j \to f$ uniformly in Ω . Show that f is μ -summable and

$$\lim_{j \to \infty} \int_{\Omega} f_j \, d\mu = \int_{\Omega} f \, d\mu.$$

1 / 1