Exercise 12.1.

The goal of this exercise is to compute the following Riemann integral:

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{\sin x}{x} d x
$$

(a) Show that the function $\Phi:(0, \infty) \rightarrow \mathbb{R}$,

$$
\Phi(t)=\int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x
$$

is well-defined and differentiable everywhere.
(b) Compute $\Phi^{\prime}(t)$ for $t \in(0, \infty)$.
(c) Compute $\Phi(t)$ for $t \in(0, \infty)$.
(d) Show that the convergence

$$
\int_{0}^{a} e^{-t x} \frac{\sin x}{x} d x \xrightarrow{a \rightarrow \infty} \int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x
$$

is uniform in $t>0$.
Hint: this part is technically more difficult. It is not true that $\int_{a}^{\infty}\left|e^{-t x} \frac{\sin x}{x}\right| d x$ converges to zero uniformly in t as $a \rightarrow \infty$. Here one has to use the cancellations of the integral, for example by seeing that

$$
\sum_{k=m}^{\infty}\left|\int_{2 k \pi}^{2(k+1) \pi} e^{-t x} \frac{\sin x}{x} d x\right|
$$

converges to zero as $m \rightarrow \infty$ uniformly in t.
(e) Conclude that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

Exercise 12.2.
Let $1 \leq p<\infty$. Show that if $\varphi \in L^{p}\left(\mathbb{R}^{n}\right)$ and φ is uniformly continuous, then

$$
\lim _{|x| \rightarrow \infty} \varphi(x)=0
$$

Exercise 12.3.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set.
(a) (Generalized Hölder inequality) Consider $1 \leq p_{1}, \ldots, p_{k} \leq \infty$ such that $\frac{1}{r}=\sum_{i=1}^{k} \frac{1}{p_{i}} \leq 1$. Show that, given functions $f_{i} \in L^{p_{i}}(\Omega, \mu)$ for $i=1, \ldots, k$, it holds $\prod_{i=1}^{k} f_{i} \in L^{r}(\Omega, \mu)$ and

$$
\left\|\prod_{i=1}^{k} f_{i}\right\|_{L^{r}} \leq \prod_{i=1}^{k}\left\|f_{i}\right\|_{L^{p_{i}}} .
$$

(b) Prove that, if $\mu(\Omega)<+\infty$, then $L^{s}(\Omega, \mu) \subseteq L^{r}(\Omega, \mu)$ for all $1 \leq r<s \leq+\infty$.
(c) Show that the inclusion in part (b) is strict for all $1 \leq r<s \leq+\infty$.

Exercise 12.4.
Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set with $\mu(\Omega)<+\infty$. Consider a function $f: \Omega \rightarrow \overline{\mathbb{R}}$ such that $f g \in L^{1}(\Omega, \mu)$ for all $g \in L^{p}(\Omega, \mu)$. Prove that $f \in L^{q}(\Omega, \mu)$ for all $q \in\left[1, p^{\prime}\right)$, where $p^{\prime}=\frac{p}{p-1}$ is the conjugate of p.

Exercise 12.5.

Let μ be a Radon measure on \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ a μ-measurable set.
(a) Show that any $f \in \bigcap_{p \in \mathbb{N}^{*}} L^{p}(\Omega, \mu)$ with $\sup _{p \in \mathbb{N}^{*}}\|f\|_{L^{p}}<+\infty$ lies in $L^{\infty}(\Omega, \mu)$.

Hint. Tchebychev' inequality.
(b) Show that if $\mu(\Omega)<+\infty$, then for any f as in part (a) we have that $\|f\|_{L^{\infty}}=\lim _{p \rightarrow \infty}\|f\|_{L^{p}}$.
(c) Find $f \in \bigcap_{p \in \mathbb{N}} L^{p}(\Omega, \mu)$, where $\mu(\Omega)<+\infty$, with $f \notin L^{\infty}(\Omega, \mu)$, i.e., show that the result from part (a) does not hold true without the assumption $\sup _{p \in \mathbb{N}}\|f\|_{L^{p}}<+\infty$.

Exercise 12.6.

Let $\left(x_{n, m}\right)_{(n, m) \in \mathbb{N}^{2}} \subset[0,+\infty]$ be a sequence parametrized by \mathbb{N}^{2}. Show that

$$
\sum_{(n, m) \in \mathbb{N}^{2}} x_{n, m}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n, m}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x_{n, m} .
$$

Remark. Given a sequence $\left(x_{\alpha}\right)_{\alpha \in A} \subset[0,+\infty]$ parametrized by an arbitrary set A, we define

$$
\sum_{\alpha \in A} x_{\alpha}:=\sup _{F \subset A \text { finite }} \sum_{\alpha \in F} x_{\alpha} .
$$

