Exercise 13.1.

Let $f \in L^p(\mathbb{R}, \lambda)$, where λ is the Lebesgue measure. By means of Fubini's Theorem, show that the following equality holds:

$$\int_{\mathbb{R}} |f(x)|^p dx = p \int_0^\infty y^{p-1} \lambda(\{x \in \mathbb{R} : |f(x)| \ge y\}) dy.$$

Hint: $|f(x)|^p = \int_0^{|f(x)|} py^{p-1} dy.$

Remark. Compare with Exercise 10.4. In that case there was an underlying Fubini-type argument in the proof. This time we can use Fubini's Theorem and get a straightforward proof.

Exercise 13.2.

Define the function $f:[0,1]^2 \to \mathbb{R}$ as

$$f(x,y) := \begin{cases} y^{-2} & \text{if } 0 < x < y < 1, \\ -x^{-2} & \text{if } 0 < y < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Is this function summable with respect to the Lebesgue measure?

Exercise 13.3.

Let $1 \leq p < +\infty$ and $f \in L^p(\mathbb{R}^n)$ and, for all $h \in \mathbb{R}^n$, consider the function $\tau_h \colon \mathbb{R}^n \to \mathbb{R}^n$ given by $\tau_h(x) = x + h$. Show that

$$||f \circ \tau_h - f||_{L^p} \to 0 \quad \text{as } h \to 0.$$

Hint: use the density of continuous and compactly supported functions in L^p (Theorem 3.7.15 in the Lecture Notes).

Exercise 13.4.

We say that a family $(\varphi_{\varepsilon})_{\varepsilon>0}$ of functions in $L^1(\mathbb{R}^n)$ is an approximate identity if:

1. $\varphi_{\varepsilon} \geq 0$ and $\int_{\mathbb{R}^n} \varphi_{\varepsilon}(x) dx = 1$ for all $\varepsilon > 0$;

2. for all $\delta > 0$ we have that $\int_{\{|x| > \delta\}} \varphi_{\varepsilon}(x) dx \to 0$ as $\varepsilon \to 0$.

(a) Given $\varphi \in L^1(\mathbb{R}^n)$ such that $\varphi \geq 0$ and $\int_{\mathbb{R}^n} \varphi(x) dx = 1$, define $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\varepsilon^{-1}x)$ for all $\varepsilon > 0$. Show that $(\varphi_{\varepsilon})_{\varepsilon > 0}$ is an approximate identity.

Let $(\varphi_{\varepsilon})_{\varepsilon>0} \subset L^1(\mathbb{R}^n)$ be an approximate identity. Show that the following statements hold. (b) If $f \in L^{\infty}(\mathbb{R}^n)$ is continuous at $x_0 \in \mathbb{R}^n$, then $f * \varphi_{\varepsilon}$ is continuous and $(f * \varphi_{\varepsilon})(x_0) \to f(x_0)$ as $\varepsilon \to 0^+$.

(c) If $f \in L^{\infty}(\mathbb{R}^n)$ is uniformly continuous, then $f * \varphi_{\varepsilon} \xrightarrow{L^{\infty}} f$ as $\varepsilon \to 0^+$.

(d) If $1 \le p < +\infty$ and $f \in L^p(\mathbb{R}^n)$, then $f * \varphi_{\varepsilon} \xrightarrow{L^p} f$ as $\varepsilon \to 0^+$.

Hint: use Hölder's inequality and keep in mind Exercise 13.3 and part (b).

Exercise 13.5.

Compute the following limits:

(a)

$$\lim_{n \to \infty} \int_0^1 \frac{1+nx}{(1+x)^n} \, dx.$$

(b)

$$\lim_{n \to \infty} \int_0^1 \frac{x \log x}{1 + n^2 x^2} \, dx.$$

Exercise 13.6.

Let I = [0, 1] and consider the function

$$f:I^3\to [0,\infty], \quad f(x,y,z):=\begin{cases} \frac{1}{\sqrt{|y-z|}}, & \text{if } y\neq z,\\ \infty, & \text{if } y=z. \end{cases}$$

Show that $f \in L^1(I^3, \mathcal{L}^3)$.

Exercise 13.7.

Find a sequence of Lebesgue-measurable functions $f_n : [0,1] \to \mathbb{R}$ such that $\{f_n(x)\}_{n \in \mathbb{N}}$ is unbounded for any $x \in [0,1]$ but $f_n \to 0$ in measure.