Exercise 13.1.

Let $f \in L^{p}(\mathbb{R}, \lambda)$, where λ is the Lebesgue measure. By means of Fubini's Theorem, show that the following equality holds:

$$
\int_{\mathbb{R}}|f(x)|^{p} d x=p \int_{0}^{\infty} y^{p-1} \lambda(\{x \in \mathbb{R}:|f(x)| \geq y\}) d y
$$

Hint: $|f(x)|^{p}=\int_{0}^{|f(x)|} p y^{p-1} d y$.
Remark. Compare with Exercise 10.4. In that case there was an underlying Fubini-type argument in the proof. This time we can use Fubini's Theorem and get a straightforward proof.

Exercise 13.2.

Define the function $f:[0,1]^{2} \rightarrow \mathbb{R}$ as

$$
f(x, y):= \begin{cases}y^{-2} & \text { if } 0<x<y<1 \\ -x^{-2} & \text { if } 0<y<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Is this function summable with respect to the Lebesgue measure?

Exercise 13.3.

Let $1 \leq p<+\infty$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and, for all $h \in \mathbb{R}^{n}$, consider the function $\tau_{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\tau_{h}(x)=x+h$. Show that

$$
\left\|f \circ \tau_{h}-f\right\|_{L^{p}} \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

Hint: use the density of continuous and compactly supported functions in L^{p} (Theorem 3.7.15 in the Lecture Notes).

Exercise 13.4.

We say that a family $\left(\varphi_{\varepsilon}\right)_{\varepsilon>0}$ of functions in $L^{1}\left(\mathbb{R}^{n}\right)$ is an approximate identity if:

1. $\varphi_{\varepsilon} \geq 0$ and $\int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(x) d x=1$ for all $\varepsilon>0$;
2. for all $\delta>0$ we have that $\int_{\{|x| \geq \delta\}} \varphi_{\varepsilon}(x) d x \rightarrow 0$ as $\varepsilon \rightarrow 0$.
(a) Given $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $\varphi \geq 0$ and $\int_{\mathbb{R}^{n}} \varphi(x) d x=1$, define $\varphi_{\varepsilon}(x)=\varepsilon^{-n} \varphi\left(\varepsilon^{-1} x\right)$ for all $\varepsilon>0$. Show that $\left(\varphi_{\varepsilon}\right)_{\varepsilon>0}$ is an approximate identity.

Let $\left(\varphi_{\varepsilon}\right)_{\varepsilon>0} \subset L^{1}\left(\mathbb{R}^{n}\right)$ be an approximate identity. Show that the following statements hold.
(b) If $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is continuous at $x_{0} \in \mathbb{R}^{n}$, then $f * \varphi_{\varepsilon}$ is continuous and $\left(f * \varphi_{\varepsilon}\right)\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$ as $\varepsilon \rightarrow 0^{+}$.
(c) If $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is uniformly continuous, then $f * \varphi_{\varepsilon} \xrightarrow{L^{\infty}} f$ as $\varepsilon \rightarrow 0^{+}$.
(d) If $1 \leq p<+\infty$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then $f * \varphi_{\varepsilon} \xrightarrow{L^{p}} f$ as $\varepsilon \rightarrow 0^{+}$.

Hint: use Hölder's inequality and keep in mind Exercise 13.3 and part (b).

Exercise 13.5.

Compute the following limits:
(a)

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1+n x}{(1+x)^{n}} d x
$$

(b)

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{x \log x}{1+n^{2} x^{2}} d x
$$

Exercise 13.6.
Let $I=[0,1]$ and consider the function

$$
f: I^{3} \rightarrow[0, \infty], \quad f(x, y, z):= \begin{cases}\frac{1}{\sqrt{|y-z|}}, & \text { if } y \neq z \\ \infty, & \text { if } y=z\end{cases}
$$

Show that $f \in L^{1}\left(I^{3}, \mathcal{L}^{3}\right)$.

Exercise 13.7.

Find a sequence of Lebesgue-measurable functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}}$ is unbounded for any $x \in[0,1]$ but $f_{n} \rightarrow 0$ in measure.

