Exercise 1.1.

Recall the definition of open set:
A set $\Omega \subseteq \mathbb{R}^{n}$ is called open if for every point $x_{0} \in \Omega \exists r>0 \mathrm{~s} . t$.

$$
B_{r}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<r\right\} \subseteq \Omega
$$

(a) Prove the following properties of open sets:
i) $\varnothing, \mathbb{R}^{n}$ are open;
ii) $\Omega_{1}, \Omega_{2} \subseteq \mathbb{R}^{n}$ open $\Rightarrow \Omega_{1} \cap \Omega_{2}$ open;
iii) $\Omega_{i} \subseteq \mathbb{R}^{n}$ open $\forall i \in I \Rightarrow \bigcup_{i \in I} \Omega_{i}$ open (here I is an arbitrary index set).

Solution:

i) For \varnothing there is nothing to prove; for \mathbb{R}^{n}, it suffices to take $r=1$ for each $x_{0} \in \mathbb{R}^{n}$, because $B_{1}\left(x_{0}\right) \subseteq \mathbb{R}^{n}$.
ii) Let $x_{0} \in \Omega_{1} \cap \Omega_{2}$ and let r_{i} such that $B_{r_{i}}\left(x_{0}\right) \subseteq \Omega_{i}$ for $i=1,2$. Then set r to be the minimum of r_{1} and r_{2}, so that $r>0$ and

$$
B_{r}\left(x_{0}\right) \subseteq B_{r_{i}}\left(x_{0}\right) \subseteq \Omega_{i}
$$

for each $i \in\{1,2\}$, and therefore $B_{r}\left(x_{0}\right)$ lies in the intersection.
iii) Let $\Omega:=\bigcup_{i \in I} \Omega_{i}$ and $x_{0} \in \Omega$. Therefore $\exists i \in I$ such that $x_{0} \in \Omega_{i}$ and thus we can pick $r>0$ with $B_{r}\left(x_{0}\right) \subseteq \Omega_{i} \subseteq \Omega$.
Recall also:
A set $A \subseteq \mathbb{R}^{n}$ is called closed if $\mathbb{R}^{n} \backslash A$ is open.
(b) Prove the following properties of closed sets:
i) $\varnothing, \mathbb{R}^{n}$ are closed;
ii) $A_{1}, A_{2} \subseteq \mathbb{R}^{n}$ closed $\Rightarrow A_{1} \cup A_{2}$ closed;
iii) $A_{i} \subseteq \mathbb{R}^{n}$ closed $\forall i \in I \Rightarrow \bigcap_{i \in I} A_{i}$ closed (here I is again an arbitrary index set).

Solution: All the properties follow from the corresponding properties of open sets and the laws of De Morgan. More precisely, i) is trivial, ii) follows from

$$
\left(A_{1} \cup A_{2}\right)^{c}=A_{1}^{c} \cap A_{2}^{c}
$$

and iii) follows from

$$
\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}^{c}
$$

Exercise 1.2.

(a) Show that the intersection of infinitely many open sets is in general not open.

Solution: Let $n=1$ and consider the open sets $\Omega_{k}=\left(-\frac{1}{k},+\infty\right) \subset \mathbb{R}$ for $k=1,2, \ldots$. Their intersection is clearly the interval $[0,+\infty)$, which is of course not open because it contains no interval around 0 . Note that even for countably many open sets the statement is false.
(b) Show that the union of infinitely many closed sets is in general not closed.

Solution: We can take as an example the complements of the above sets: $A_{k}=\left(-\infty,-\frac{1}{k}\right]$ for $k=1,2, \ldots$. Their union is the open interval $(-\infty, 0)$, which is not closed because its complement $[0,+\infty)$, as we have seen, is not open.

Exercise 1.3.

(a) Let A be a fixed subset of a set X. Determine the σ-algebra of subsets of X generated by $\{A\}$.

Solution: The σ-algebra generated by $\{A\}$ necessarily contains the following elements:

$$
\emptyset, A, A^{c}, X .
$$

Due to the collection $\left\{\emptyset, A, A^{c}, X\right\}$ already being closed under taking complements and unions of sets, this is the σ-algebra generated by $\{A\}$.
(b) Let X be an infinite set; let

$$
\mathcal{A}=\left\{A \subset X: A \text { or } A^{c} \text { is finite }\right\} .
$$

Prove that \mathcal{A} is an algebra, but not a σ-algebra.
Solution: Clearly, we have that $X \in \mathcal{A}$ and \mathcal{A} is closed under complement. Thus we only need to check that \mathcal{A} is closed under finite union. Let $A, B \in \mathcal{A}$. If A and B are finite, then $A \cup B$ is finite and thus $A \cup B \in \mathcal{A}$. Otherwise at least one between A^{c} and B^{c} is finite and therefore $(A \cup B)^{c}=A^{c} \cap B^{c}$ is finite, which implies again $A \cup B \in \mathcal{A}$.
We now prove that \mathcal{A} is not a σ-algebra (for every infinite set X). Indeed, let $Y=\left\{a_{n}\right\}_{n} \subset X$ be a countable subset such that Y^{c} is infinite, and define $A_{n}=\left\{a_{n}\right\}$ for all n. Note that $A_{n} \in \mathcal{A}$, since it is finite. On the other hand $\cup_{n=1}^{\infty} A_{n}=Y$ is infinite with Y^{c} infinite, hence it is not contained in \mathcal{A}. This proves that \mathcal{A} is not a σ-algebra because it is not closed under countable union.
(c) Let X be an uncountable set; let

$$
\mathcal{S}=\left\{E \subset X: E \text { or } E^{c} \text { is at most countable }\right\}
$$

Show that \mathcal{S} is a σ-algebra and that \mathcal{S} is generated by the one-point subsets of X.
Solution: Firstly, let us show that \mathcal{S} is a σ-algebra. Clearly, \emptyset and X belong to \mathcal{S}. Moreover, it is easy to see that \mathcal{S} is closed under taking complements. Let therefore $\left\{A_{k}\right\} \subset \mathcal{S}$. If all sets $\left\{A_{k}\right\}$ are at most countable, then so is $\cup_{k=1}^{\infty} A_{k}$, implying that the union again belongs to \mathcal{S}. Otherwise, A_{m} is uncountable for some m, therefore A_{m}^{c} is at most countable. Due to the inclusion

$$
\left(\bigcup_{k=1}^{\infty} A_{k}\right)^{c} \subset A_{m}^{c},
$$

the complement of $\cup_{k=1}^{\infty} A_{k}$ is at most countable and therefore

$$
\bigcup_{k=1}^{\infty} A_{k} \in \mathcal{S} .
$$

It remains to show that \mathcal{S} is generated by the one-point subsets of X. By the definition of \mathcal{S}, all one-point subsets belong to \mathcal{S}. In addition, for every A in \mathcal{S}, either A or its complement can be expressed as a countable union of one-point subsets. Consequently, every element in \mathcal{S} can be obtain from the one-point subsets using unions and complements.

Exercise 1.4.

Let X and Y be two sets and $f: X \rightarrow Y$ a map between them.
(a) If \mathcal{B} is a σ-algebra on Y, show that

$$
\left\{f^{-1}(E): E \in \mathcal{B}\right\}
$$

is a σ-algebra on X.
Solution: Let \mathcal{A} be the collection of sets defined in this way. Observe that $X=f^{-1}(Y)$, so that $X \in \mathcal{A}$ and

$$
\left(f^{-1}(B)\right)^{c}=\{x \in X \mid f(x) \notin B\}=\left\{x \in X \mid f(x) \in B^{c}\right\}=f^{-1}\left(B^{c}\right)
$$

so that \mathcal{A} is closed with respect to complements. Finally, given a sequence $\left(A_{i}\right) \subset \mathcal{A}$, take $\left(B_{i}\right) \subset \mathcal{B}$ so that $A_{i}=f^{-1}\left(B_{i}\right)$ and observe that

$$
\begin{aligned}
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} f^{-1}\left(B_{i}\right) & =\left\{x \in X \mid \exists i \geq 1 \text { such that } f(x) \in B_{i}\right\} \\
& =\left\{x \in X \mid f(x) \in \bigcup_{i=1}^{\infty} B_{i}\right\} \\
& =f^{-1}\left(\bigcup_{i=1}^{\infty} B_{i}\right) \in \mathcal{A}
\end{aligned}
$$

because $\bigcup_{i=1}^{\infty} B_{i} \in \mathcal{B}$. This proves that \mathcal{A} is a σ-algebra.
(b) If \mathcal{A} is a σ-algebra on X, show that

$$
\left\{E \subseteq Y: f^{-1}(E) \in \mathcal{A}\right\}
$$

is a σ-algebra on Y.
Solution: Denote this collection of sets by \mathcal{B} and observe first that $f^{-1}(Y)=X \in \mathcal{A}$, so that $Y \in \mathcal{B}$. Moreover, again, $f^{-1}\left(B^{c}\right)=\left(f^{-1}(B)\right)^{c} \in \mathcal{A}$ if $B \in \mathcal{B}$, so that $B^{c} \in \mathcal{B}$ too, showing closedness under complements. Finally, given a sequence $\left(B_{i}\right) \in \mathcal{B}$, we have as before

$$
f^{-1}\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\bigcup_{i=1}^{\infty} f^{-1}\left(B_{i}\right) \in \mathcal{A}
$$

so $\bigcup_{i=1}^{\infty} B_{i} \in \mathcal{B}$.

Exercise 1.5.

Let X be a set and $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a collection of subsets of X.
(a) Show the following:

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} A_{n}=\left\{x \in X \quad \mid \forall N \geq 1, \exists n \geq N: x \in A_{n}\right\} \\
& \liminf _{n \rightarrow+\infty} A_{n}=\left\{x \in X \mid \exists N \geq 1, \forall n \geq N: x \in A_{n}\right\}
\end{aligned}
$$

Solution: Observe that:

$$
\begin{aligned}
\limsup _{n \rightarrow+\infty} A_{n} & =\bigcap_{N=1}^{\infty} \bigcup_{n \geq N} A_{n}=\left\{x \in X \mid \forall N \geq 1: x \in \bigcup_{n \geq N} A_{n}\right\} \\
& =\left\{x \in X \mid \forall N \geq 1, \exists n \geq N: x \in A_{n}\right\}
\end{aligned}
$$

The other case follows similarly.
(b) Show that $\lim \inf A_{n} \subset \limsup A_{n}$.

Solution: Using the characterisation of the previous exercise, this is immediate.
(c) Assume $X=\{1,2, \ldots, 6\}^{\mathbb{N}}$ and $A_{m}=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in X \mid x_{m}=6\right\}$. Interpreting X as the possible outcomes of throwing a dice infinitely often and A_{m} as the subset of all outcomes where your m-th throw is a 6 , give an interpretation of $\lim \sup A_{m}$ and $\lim \inf A_{m}$.
Solution: The set $\lim \sup A_{m}$ is the subset of outcomes, where at every point N in time, you will throw another 6 in a later turn. Therefore, $\lim \sup A_{m}$ contains all outcomes where you throw a 6 infinitely often. On the other hand, $\lim \inf A_{m}$ consists of all outcomes where, after a certain point in time, you exclusively throw 6 .

Exercise 1.6.

Let μ be a measure on a set X, and let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of subsets of X satisfying

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty
$$

Consider the set

$$
E=\left\{x \in X: x \text { belongs to } A_{n} \text { for infinitely many } n\right\}=\limsup _{n \rightarrow+\infty} A_{n}
$$

show that $\mu(E)=0$.
Solution: For every n, we define

$$
E_{n}:=\bigcup_{i=n}^{\infty} A_{i} .
$$

It is straightforward to see that for all n, we have the inclusion $E \subset E_{n}$. Therefore, we obtain the following for all n

$$
\mu(E) \leq \mu\left(E_{n}\right) \leq \sum_{i=n}^{\infty} \mu\left(A_{i}\right)
$$

due to the subadditivity of μ. Because of

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty
$$

we obtain

$$
\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \mu\left(A_{i}\right)=0
$$

which yields

$$
\mu(E)=0 .
$$

